
 

Mismatch of Expectations: How Modern Learning  
Resources Fail Conversational Programmers 

ABSTRACT 
Conversational programmers represent a class of learners 
who are not required to write any code, yet try to learn pro-
gramming to improve their participation in technical con-
versations. We carried out interviews with 23 conversation-
al programmers to better understand the challenges they 
face in technical conversations, what resources they choose 
to learn programming, how they perceive the learning pro-
cess, and to what extent learning programming actually 
helps them. Among our key findings, we found that conver-
sational programmers often did not know where to even 
begin the learning process and ended up using formal and 
informal learning resources that focus largely on program-
ming syntax and logic. However, since the end goal of con-
versational programmers was not to build artifacts, modern 
learning resources usually failed these learners in their pur-
suits of improving their technical conversations. Our find-
ings point to design opportunities in HCI to invent learner-
centered approaches that address the needs of conversation-
al programmers and help them establish common ground in 
technical conversations.  
Author Keywords 
Conversational programmers; learner-centered design; pro-
gramming literacy; technical conversations. 

ACM Classification Keywords 
K.3.2 Computers and Education: Computer and Information 
Science Education—literacy, computer science education. 

INTRODUCTION 
Considerable research efforts have been devoted to human-
computer interaction (HCI) and computing education re-
search towards lowering the barriers to learning program-
ming. Many of these efforts have contributed innovative 
tools and approaches to support the programming needs of a 

variety of learners, such as computer science (CS) students 
[17,28,53], end-user programmers [14,15,30,32] and profes-
sional programmers [1,3,13]. A large focus of these projects 
has been on improving learners’ understanding of program-
ming syntax and logic and facilitating interaction with fea-
ture-rich programming environments as these are known to 
present key challenges for new learners.  

Unfortunately, most of what we know about the programming 
learning process and the challenges that learners face is based 
on studies of students in the classroom [53] or professionals in 
industry [1]. Only recently have we started seeing studies into 
informal learning processes among non-traditional popula-
tions, such as designers [15], high school teachers [43], and 
older adults [22]. Given this increased diversity in learning 
needs and the backgrounds and skills of programming learn-
ers, there have been increased calls [24] to better understand 
the goals of such diverse learners and their interaction with 
modern learning resources.      
Pushing on this idea of learner diversity, recent work sug-
gests that there is a unique class of learners who are moti-
vated to learn programming, but never actually need to 
write code [7,8]. These learners are termed as conversational 
programmers as they seek to acquire programming skills 
only to engage more effectively in technical conversations or 
to improve their job marketability (e.g., in marketing, sales, 
UI design, or management). Although prior work has estab-
lished the existence of such a population of conversational 
programmers at a single technology company [8] and in the 
classroom [7], do such people exist more broadly in other 
more diverse settings and similarly learn programming to 
improve technical conversations? Several other questions 
also remain unanswered: how do conversational program-
mers actually approach learning programming when their 
goal is not to write code? To what extent are their learning 
approaches similar or different from other non-traditional 
learners, such as end-user programmers? And, do conversa-
tional programmers even find it useful to learn program-
ming to improve their technical conversations?  
In this paper, inspired by the idea of learner-centered design 
[24,51], we investigate the learning needs and strategies of 
conversational programmers. We took a qualitative ap-
proach for this investigation and recruited a broad range of 
people representing different professions in local companies 
and educational and non-profit institutions (e.g., archivist, 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post 
on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from Permissions@acm.org. 
 
CHI 2018, April 21–26, 2018, Montreal, QC, Canada  
© 2018 Association for Computing Machinery. 
ACM ISBN 978-1-4503-5620-6/18/04…$15.00  
https://doi.org/10.1145/3173574.3174085 
 

April Y. Wang1, Ryan Mitts1, Philip J. Guo2, and Parmit K. Chilana1 
1Computing Science  

Simon Fraser University 
Burnaby, BC Canada 

{ayw7, rmitts, pchilana}@sfu.ca 

2Design Lab 
UC San Diego 

La Jolla, CA USA 
pg@ucsd.edu 

 



 

artist, entrepreneur, HR coordinator, admin staff, psycholo-
gist, event manager, marketing assistant, medical instructor 
and visual designer). We carried out 23 interviews (14 fe-
male) with a diverse set of participants who did not have a 
formal degree in CS, did not work in an engineering role, 
and were not required to write code on the job, but had tried 
to learn programming. Our interviews focused on uncover-
ing the kinds of challenges these conversational program-
mers faced in technical conversations and how and why 
they made use of different approaches and modern re-
sources for learning programming. The interviews also 
probed into the participants’ perceptions of whether or not 
their efforts in learning programming were actually helpful 
for their conversations or other aspects of their jobs.   
Our key findings illustrate a variety of challenges and misun-
derstandings that conversational programmers can encounter 
in technical conversations and that can eventually motivate 
them to explore programming. However, we found that most 
conversational programmers often do not know where to 
even begin the learning process and typically seek recom-
mendations from other programmers or rely on popular web 
search results. This leads them to invest in formal and infor-
mal learning strategies that are typically designed for profes-
sional or end-user programmers and heavily focus on syntax 
and logic issues in code. However, since the end goal of con-
versational programmers is not to build artifacts, a mismatch 
ensues between their expectations and what these learning 
resources offer, with conversational programmers often feel-
ing like they have failed. 
The main contribution of this paper is in providing empirical 
evidence characterizing the unique learning needs of conver-
sational programmers, how these needs differ from popula-
tions of end-user programmers and professional program-
mers, and how modern learning resources that focus on arti-
fact-creation can fail conversational programmers.   

RELATED WORK 
Our study builds upon prior work in HCI and computing 
education that focuses on non-traditional learner popula-
tions (e.g., learners who are not CS majors or professional 
programmers) and how people interact with formal and in-
formal programming learning environments. 

Studies of non-traditional programmers 
End-user programmers were among the first group of non-
traditional programmers to receive attention in the literature. 
This class of programmers consists of people who write code 
not for professional software development tasks, but to solve 
a domain-specific problem or to improve their productivity in 
a particular domain [32]. It is estimated that the population of 
end-user programmers is much larger than professional pro-
grammers [47], and many studies have been carried out to 
understand why and how different groups of end-user pro-
grammers learn programming. For example, web designers 
and data scientists write scripts for domain-specific project 
needs, and they mainly learn by “head-first” and “trial and 
error” methodologies [13,15,28] often by consulting books, 

code examples, blogs, and forums [14,15].  
Recent studies show that another emerging non-traditional 
learner population consists of conversational programmers 
[7,8]. Past surveys indicate that this population is mainly 
motivated to learn programming to improve the efficacy of 
technical conversations and to acquire marketable skillsets. 
Although there was some indication that conversational pro-
grammers at a large technology company were using online 
resources, courses, books, and help from colleagues to ac-
quire programming skills, prior work does not provide any 
insights into the actual learning strategies and approaches 
used by these learners, and whether they actually succeeded 
in improving their technical conversations. Our work adds 
insights into how conversational programmers exist in di-
verse job sectors, how and why they use different learning 
resources, and how they perceive those available resources. 
K-12 teachers tasked to teach CS are another group of people 
who learn programming on-the-job [43,44], and they share 
some similarities with conversational programmers. Alt-
hough teachers may never need to write code on-the-job [43], 
they still need to understand programming syntax and logic 
since they need to teach those in class, grade coding assign-
ments, and answer coding-related questions. There is some 
indication that these teachers can have feelings of isolation in 
the learning process and may benefit from having their own 
dedicated learning communities. Our study found similar 
sentiments amongst conversational programmers. 

Formal learning environments for programming 
Formal learning is defined as an activity that has a struc-
tured curriculum with clearly defined objectives carried out 
within a defined schedule, such as a school or college 
course, or a workshop [52]. Research on non-CS major stu-
dents taking intro CS courses [7,19,56] revealed that not 
everyone learning programming intends to become a pro-
fessional programmer, and traditional intro CS courses 
failed to engage non-CS major students. With growing calls 
for learner-centered design [24], some recent work has ex-
plored formal ways of making programming relevant for 
non-CS students [19,20,23,25,40]. For example, efforts 
have been made to teach programming skills in the context 
of media computation [23,25], and introducing the concepts 
of natural language processing (NLP) and artificial intelli-
gence (AI) in a non-programming context [35]. 
In addition to traditional K-12 and college classrooms, 
MOOCs (Massive Open Online Courses) for programming 
have become popular among some adult learners [18,59]. 
Other emerging formal learning environments include coding 
bootcamps where adults who want to improve their practical 
coding ability can focus on particular topics for a short period 
of time. Although these formal learning methods require less 
of a time investment than college courses, doubts have been 
raised about whether bootcamps or MOOCs actually work 
for people who seek to improve their employment prospects 
[29,54]. Our study further reveals that these formal ap-
proaches present cost vs. benefit tradeoffs that are even more 



 

acute for conversational programmers, making them less 
popular among this population of learners.  
Informal learning resources for programming 
In contrast to formal learning, informal learning consists of 
activities that are unstructured, self-directed, and initiated in 
response to some need, often on-the-job [41,52]. The learn-
er typically self-manages this type of learning and focuses 
on improving certain skills or addressing specific gaps in 
knowledge. In terms of informal ways of learning pro-
gramming, considerable attention has been paid to investi-
gate how people can learn programming online. 
For example, several studies have examined why and when 
online interactive coding tutorials are useful [27,31,36]. 
Although these tutorials can help learners with artifact-
creation needs (e.g., professional or end-user programmers) 
get started, their utility is perceived to be limited as tutorials 
are rarely tailored to learners' prior coding knowledge. Our 
study further shows that even conversational programmers 
experience feelings of failure with such informal resources, 
but for different reasons. For example, for conversational 
programmers the key drawback is that these informal re-
sources focus mostly on syntax and logic issues and provide 
less conceptual explanations. 

Another class of research has explored informal learning 
and information seeking behaviors on discussion forums for 
novice programmers [3,38]. These forums effectively facili-
tate discussion and peer-to-peer knowledge exchange 
among learners writing code [38,46,49]. But, as discussed 
in prior work [17,40], we also found that the identity of the 
user and type of forum can affect how well users participate 
in these discussions. Furthermore, we found that conversa-
tional programmers often felt like “outsiders” in communi-
ties targeting artifact creation needs.  

METHOD  
To study the learning strategies of conversational pro-
grammers, we conducted semi-structured interviews with 
23 participants from a variety of backgrounds (Table 1).  
Participants and Recruitment 
We recruited self-identified conversational programmers 
through personal connections and snowball sampling, adver-
tising posters at educational organizations, and through mail-
ing lists of local meet-up groups for programming over a 4-
month period in 2017. Our participants had to fit the follow-
ing criteria to take part in the interviews: 1) not have a formal 
degree (or even a minor) in computer science, engineering or 
IT; 2) not be working in any kind of a software development 
or engineering role or any role requiring programming on-

the-job; and, 3) must have recently tried to 
learn programming or CS either informally or formally.  
We ended up with 23 study participants (14 female) as we 
aimed for diversity in job roles, age, and gender. As shown in 
Table 1, our participants held a variety of positions (e.g., 
artist, psychologist, pharmacist, entrepreneur, library archi-
vist, bank clerk, medical instructor). They also brought in 
different levels of experience, ranging from being an intern to 
a senior manager with 20 years of experience.  
The interview instrument 
Before the interview, we collected basic demographic in-
formation through a questionnaire (e.g., age, gender, occu-
pation, education and previous experiences with program-
ming languages). We began the interview with some warm-
up questions. For example, we asked them to describe their 
current work and recall the most recent situation in which 
they were required to have a technical conversation. 
Next, we asked questions about their learning process and 
strategies, focusing on resources they used, in which situa-
tion they used those resources, how they knew where to 
look at resources and to what extent they found the re-
sources to be useful. Initially we used common resources 
for learning programming to prompt the participants if nec-
essary (e.g., programming courses, books, online documen-
tation, Stack Overflow, MOOCs). After the first five inter-
views, we updated this list with additional informal re-
sources that came up in the interviews so far (e.g., Wikipe-
dia, articles, news, blogs, magazines, YouTube videos). 
Lastly, we ended the interview by probing into conversa-
tional programmers’ perceptions of the learning process, 
asking them to reflect on what they felt they achieved after 
all their learning efforts and whether (or not) they wanted to 
keep learning programming in the future.  
Data Analysis 
We transcribed the audio recordings and did an open coding 
of the data using ATLAS.ti. We used an inductive analysis [12] 
approach and affinity diagrams to explore the themes around 
our main research questions. Three members of the research 
team first began with an open coding pass to individually 
create a list of potential codes. Upon discussion and use of 
affinity diagrams, a single coding scheme was devised and 
two team members independently coded two of the tran-
scripts using this scheme. The first pass inter-rater reliability 
test achieved a Kappa score of 0.61 as there was some confu-
sion about redundant codes and where they should be used. 
Upon further discussion and iteration with the research team, 
we revised the coding scheme, merging the potentially over-

ID Age Occupation ID Age Occupation ID Age Occupation 
P1 31-40F entrepreneur P9 19-30F advertising manager P17 41-50M product manager 
P2 19-30M visual designer P10 31-40F health scientist P18 31-40F humanities scholar 
P3 41-50F bank clerk P11 19-30F library archivist P19 19-30F artist 
P4 41-50F HR coordinator P12 19-30M business assistant (intern) P20 31-40F marketing coordinator 
P5 19-30M helpdesk support (intern) P13 19-30M product manager P21 19-30M business assistant (intern) 
P6 51-60F pharmacist P14 19-30F HR coordinator P22 51-60F medical instructor 
P7 19-30M business development manager P15 19-30F university administrative staff P23 31-40F psychologist 
P8 19-30M marketing coordinator P16 19-30M marketing assistant (intern)    

Table 1. Our participants from local companies and educational and non-profit institutions represented a diverse range of occupations  
 



 

lapping codes and removing the infrequent codes. Next, the 
two raters applied the revised coding scheme on a new subset 
of interview transcripts, achieving a higher Kappa score of 
0.87. We next used axial coding to discover relationships 
among emerging concepts, followed by selective coding to 
identify recurring themes. 
Presentation of Results 
Our analysis revealed a number of themes and next we focus 
on presenting key results on why conversational program-
mers wanted to learn programming, how they approached 
learning programming, how they perceived and struggled in 
the learning process, and, paradoxically, why they still had a 
positive attitude towards learning programming. 
KEY REASONS FOR LEARNING PROGRAMMING  
As shown in Table 1, our study participants were profession-
als and domain experts in a variety of roles and did not need 
to write code on-the-job. In their responses to motivations for 
learning programming, we saw many similar responses to 
previous studies [7,8] of conversational programmers: our 
participants mainly wanted to learn programming to improve 
their technical conversations (16/23) or to enhance their fu-
ture marketability (7/23). In addition, some participants were 
interested in using their programming skills to perform end-
user programming tasks (5/23), to gain credibility with their 
technical team members (4/23), and to stay current with digi-
tal trends and technology developments (4/23).  
Given that a key motivation for learning programming was 
improving technical conversations, we first shed light on why 
our participants found it challenging to converse with devel-
opers and other technical personnel.  
Challenges in understanding the context of conversations 
Participants commonly reported that they felt lost in under-
standing the full context of implementation decisions made 
by software developers that involved low-level details or 
high-level concepts, such as machine learning.  
Some participants said they found it difficult to follow 
along and make sense of important technical conversations 
because they simply did not have a shared vocabulary. For 
example, an advertising manager described her challenge in 
interpreting the data that the development team collected 
for campaign planning:  
We do a lot of the advertising work on the internet and we have 
programmers who gather data for planning campaigns. I always 
need to contact them to figure out how they collect it. So, the 
conversations are very difficult... especially when they mention 
terminologies around network, database, big data, and algo-
rithms... I feel like I have to learn from the beginning, and that's 
why I am learning Python right now. (P9) 
In other cases, conversational programmers were not only 
required to listen and understand the technical conversa-
tions, but also to be able to talk using technical terminology. 
For example, an entrepreneur from a local start-up company, 
who was usually invited to give keynotes on innovation 

strategies or investment pathways, explained how she had 
to make sure her understanding of certain terminology was 
“100% accurate”:  
If something was wrong about a technical concept [that I 
learned], and then if I were to say it in front of people who are 
world leaders…that would be embarrassing. (P1) 
Challenges in building rapport  
In addition to better understanding the context during tech-
nical conversations, our participants were motivated to 
learn programming to build rapport with technical people as 
well. Our participants’ narratives revealed how they often 
experienced strains in their professional relationships or felt 
ignored because of their lack of programming knowledge: 
…the programming people tend to be not interested in talking 
to me. We don’t really speak the same language. (P3) 
By learning programming, some participants felt they could 
gain respect and credibility from their technical teams. For 
example, a business development manager whose job was 
to provide customer feedback to developers said: 
…if you can write code or you can understand code, developers 
respect you more…they would “let you in” …when you're hav-
ing a conversation it's easier for you to get what you want. (P7) 
Another participant working in a technology consulting com-
pany found it useful to socialize with developers by better 
understanding and making programming-related jokes: 
Our company has a shared space as resources for other compa-
nies to use…I became close friends with a number of companies, 
as well as, a lot of them are our clients as well... Learning some 
basic syntax, I was able to joke about basic stuff like, “Man, I 
messed up one comma, and I've messed up my entire code!” 
Little jokes and nuances that people who know the language can 
laugh about really helps me start the conversation. (P13) 
In summary, our participants were mainly motivated to 
learn programming because they believed that it would help 
them better understand the context of technical conversa-
tions and build rapport with technical people on the other 
side of these conversations.  
APPROACHES USED FOR LEARNING PROGRAMMING  
To investigate how conversational programmers tried learn-
ing programming, we focused on eliciting the different ap-
proaches and resources that our participants attempted to use.  

Beginning the learning process 
Most of our participants (19/23) mentioned that they often 
did not even know where to start the learning process and 
their first instinct to learn programming was to ask an expert 
(e.g., a colleague, friend, or more technical family member):  
I think if I had a programming background, I probably would 
have been able to find information a lot easier and quicker, but 
because I had to browse through so much and I didn't under-
stand some of the lingo…so, I found it easier just to ask my 
developer-colleagues like what website should I go to if I want 
more information on this [programming language]. (P20) 



 

In fact, participants reported that they relied on experts 
throughout the learning process: to confirm the relevance of 
what they found online, to seek definitions or clarifications 
of technical terms, or to help them debug the coding prob-
lems that were encountered during the learning process. 
Another approach to getting started that participants de-
scribed was that they would just try to search online and try 
to follow the top search results. Several participants de-
scribed how they relied on Google in particular to look up 
programming-related definitions of terminologies:  
When I google search these terminologies, I click on Wikipedia 
all the time because Wikipedia pops up quite heavily in the 
first few search columns. (P13) 
Using guidance from an expert or suggestions from online 
search, our participants ended up investing in different formal 
and informal learning approaches described below. Overall, 
participants mentioned trying out 21 different programming 
languages (e.g., HTML, CSS, JavaScript, Python, PHP, Ruby, 
SQL, R, VBA) as well as finding information on over 20 dif-
ferent technical concepts, such as “machine learning”, “big 
data”, “cloud computing” and “blockchain”. 
Formal and informal learning approaches  
We summarize the key formal and informal learning ap-
proaches described by participants in Table 2. Although our 
participants were more likely to use informal learning re-
sources, a few participants had invested in even paid formal 
methods to seek more guided instruction, such as in-person 
short-term college programming courses (2/23), attending 
bootcamps or programming workshops (7/23), and signing 
up for free online courses (6/23) through Lynda.com, 
Coursera, and CS50 at Harvard. 
Since our participants had tried many types of informal ap-
proaches, we have categorized their top responses below.    
Online reference resources: Some participants sought in-
formation on explanations of terminology and usage of API 
instructions using online reference resources usually suggest-
ed in search results. Many participants (10/23) visited online 
documentation sites, such as coding reference sites (e.g., 
W3Schools) and service/product sites (e.g., Amazon Web 
Services). Similarly, Wikipedia was also widely used by par-
ticipants (9/23), particularly for checking definitions of un-
familiar terminologies brought up in technical conversations. 
Forums: Most of the participants (16/23) had come across 

online forums, such as for specific services, (e.g., Word-
Press, Drupal), coding forums (e.g., Microsoft forums) and 
general-purpose platforms (e.g., Quora, Reddit, Facebook 
Groups, Slack Groups) to seek information related to pro-
gramming. However, participants were not actively in-
volved in typical online communities for developers. For 
example, most of the participants (18/23) had never used or 
even heard of Stack Overflow. Among the 16 participants 
who had tried forums, only 3 participants contributed to it 
(e.g., posting a thread or replying on others' threads). 
Online coding tutorials: Several participants mentioned that 
they attempted to self-teach programming by following 
online coding tutorials. Among these tutorials, step-by-step 
YouTube videos appeared to be the most popular among our 
participants (10/23), followed by text-based interactive tuto-
rials (8/23) that included Codecademy, FreeCodeCamp, and 
CSS tricks. Participants mentioned trying out online tutorials 
particularly for web development topics. 
Popular press: Lastly, several participants (9/23) mentioned 
that they subscribed to technology-related online content to 
broaden their perspective of cutting edge technology and 
developments. These resources included technology-related 
podcasts and popular press, such as New Scientist Magazine, 
Peter Diamandis’s blog, Tech Insider, Forbes, Bloomberg, 
CNN, Guardian, TechCrunch, and company newsletters.  
PERCEPTIONS OF THE LEARNING PROCESS AND 
FEELINGS OF FAILURE  
As described above, our participants had engaged in a va-
riety of informal and formal learning strategies based on 
recommendations from developers or other technical ex-
perts or by searching online. In reflecting back on their 
original motivations to mainly improve technical conversa-
tions, unfortunately, most participants felt that they did not 
get much benefit from investing the time and effort on these 
programming resources and expressed feelings of failure. In 
fact, only 6 participants reported that learning programming 
was useful for technical conversations, and only 3 partici-
pants felt confident enough to mention programming as a 
skill on their CV or during a job interview. 
In this section, we present a synthesis of the six common rea-
sons that conversational programmers felt they failed when 
using modern learning resources (summarized in Table 3). 
Takes too much time 
Since conversational programmers were not required to 
write code as their regular day job, the time they could 
commit to learn programming was limited (consistent with 
other studies on adult learners [24,59]). Whether or not us-
ing a certain resource would be time-consuming was a con-
cern raised by most of the participants.  
Although formal approaches provided a systematic learning 
environment with assistance from an instructor, our partici-
pants did not consider them to be practical because they re-
quired the most time commitment. For example, most partic-
ipants (21/23) did not sign up for in-person courses because 
they felt it was not necessary to take a course or they simply 

Formal approaches 
In-person courses (e.g., night courses at community colleges) 
Bootcamps & workshops (e.g., HTML bootcamp; Python one-
day workshop) 
Online courses (e.g., Lynda.com, Coursera, Udacity, edX) 
Informal approaches 
Online reference resources (e.g., W3Schools, Wikipedia, com-
pany's internal references site, specific services such as Drupal ) 
Forums (e.g., Reddit, Quora, Stack Overflow, Facebook Groups) 
Online coding tutorials (e.g., Codecademy, FreeCodeCamp) 
Popular press (e.g., Tech Insider; Bloomberg; TechCrunch) 
Table 2. Formal and informal resources used by participants 

 



 

did not have enough time to take it. Even though some partic-
ipants did sign up for MOOCs and other online courses (6/23) 
and could leverage the convenience of distance learning, 
most participants ended up being busy with their day job and 
found it difficult to maintain focus and commit time for com-
pletion:  
I am learning JavaScript in CS50. It's a real Harvard lecture, 
so you have students from Harvard attending it and they just 
film the thing. But I have given up on it several times... This is 
my fourth time taking CS50, or fourth time attempting to... 
Every time I get caught up with other work or I'm too busy. (P7) 
Although informal resources were perceived to be easier to 
use, they could also be time-consuming because conversa-
tional programmers did not have enough background to 
“have the vocabulary to phrase the questions” (P18). They 
often ended up spending hours and “finding nothing that's 
really useful” (P6). For example, one participant com-
plained that going through non-relevant YouTube videos 
could be a huge time sink: 
So sometimes there might be stuff [in videos] you already know 
or stuff that you just do not care about. Sometimes it could 
even be an advertisement. A lot of garbage, no kidding. But 
you only know it after watching [the whole video].  (P14)  

Too much focus on syntax and logic 
In their initial learning approach, conversational program-
mers were influenced by many preconceptions such as, “to 
learn programming, you have to write code. It's just like 
learning to drive a car, you cannot learn without running a 
car” (P18), or they feel like they “have to start from the be-
ginning” (P8). Therefore, the majority of participants (18/23) 
had devoted some time to learn to code in a specific language. 
However, after signing up for an online course or using 
online tutorials to learn a specific programming language, 
not many participants found it helpful enough with building 
common ground in technical conversations. For example, 
P11 admitted that going through the online coding tutorials 
did not help so much with understanding the big picture:  
I think they [coding tutorials] were very good like instructional-
ly… But, what I definitely needed is to be able to talk…just being 
able to write code, I find that I am missing out on some kind of 
larger understanding. (P11) 
Another participant who paid time and money to attend an 
introductory level bootcamp mentioned that she “wouldn't 
take it again” because she felt that these bootcamps were 
designed for people pursuing careers as software developers 
and often became more technical than she expected:  
It [the bootcamp] was overwhelming…the coding skills they 
taught is to enable somebody to parachute into a web devel-
opment job...not what I expected...(P6) 
One of our participants who was a university administrative 
staff and worked closely with students in CS, described her 
experience after attending a coding workshop in Python: 
I did the "Python Ladies Learning Code", an all-day introductory 
workshop…I thought it was obviously super helpful for me to 

understand a little bit about programming since I'm talking to CS 
major students all the time... But I don't know if it actually helps. 
I mean it's so basic level coding, right? Although I had several 
lines of codes working and printed sentences on the screen in that 
workshop, I can't recall anything tangible now. (P15) 

Explanations are not relevant 
Several participants mentioned that when they were interact-
ing with programming-related resources, their main goal was 
to seek conceptual and application-related explanations: 
… when I am learning about cache and cookies [on online 
documentation], I don't want to know if I have to use 'loop' or 
'if-else' or anything like that, I want to know what it can do for 
me, like the user side of it. (P9) 
Participants gave up on resources that did not give enough 
information on the bigger picture of concepts: 
I have given up on a YouTube channel because they were devi-
ating from what I want to learn and they were getting like a lot 
deeper than I wanted. And especially that channel was like for 
people who want to do the programming…they spent less time 
for the bigger concept. (P5) 
Understanding the limitations and benefits of programming 
or technology choices was important for conversational 
programmers, but such explanations were not always avail-
able in programming learning resources: 
...if they [developers] are saying, “Oh, we are going to use a 
library X to do this”, I think it would be good to know, ok…what 
does that mean, how much time and money does it take to use 
library X, how much does it improve performance of the data-
base? I searched [for] any websites that have the information 
out there, and haven't really seen anything related to that. (P20)  
In addition to the limitations and benefits, participants men-
tioned that they also needed to know the difference between 
certain terms or to connect the terms to a working process: 
Sometimes I need to know like how it's different from some-
thing else or how it relates to something else. For example, 
like machine learning and deep learning.... I saw a blog on 
that, talking about...like neural networks... I can't remember, 
but like very technical and low-level explanations. (P15) 
Lastly, participants also sought explanations on software 
engineering processes and development structures. For ex-
ample, one participant who was an HR coordinator ex-
plained how she wanted to know about “how development 
teams are structured” since she was “in charge of hiring 
and interviewing future developers to the company.” (P14). 
Since the target users of introductory learning resources are 
traditional programmers who will build artifacts [26,31,54], 
most of these resources concentrate on teaching syntax and 
logic, and problem solving skills.  As a result, conversational 
programmers in our study struggled to find relevant concep-
tual and application-related explanations in these resources. 
Difficult to assess the content’s reliability 
Professional programmers or end-user programmers who 
write code can often use “trial and error” to verify whether a 
tip or suggestion from a learning resource actually works in 



 

code [3,15,30]. However, conversational programmers ex-
plained that they did not have the opportunity use “trial and 
error” in conversations and the stakes were higher in getting 
accurate definitions and explanations from a resource. 
Although online search was popular among conversational 
programmers, they did not often trust the search results and 
still wanted confirmation from colleagues or friends:   
There is so much garbage on the internet that if you search 
something that does not look like an incredible website then I 
want to verify it with a human being. And all my colleagues 
would just be like, “Hey, stop googling it!” (P1) 
Participants also doubted the credibility of community-
based sites. For example, only half of the participants who 
tried forums (8/16) felt that they got anything useful from 
forums—the rest had strong negative opinions: 
…when I browse the questions [on forums], the people who 
originally posted do not give follow-up details on whether the 
answers worked or not…I understand part of it and then I am 
not sure if the person actually got it [to work]…(P9) 
In addition, participants raised concerns about whether or 
not to trust the accuracy of the content being presented in 
other resources, such as YouTube videos. One participant 
who was a marketing coordinator expressed doubts on the 
utility of watching free videos and stated a preference for 
instead relying on paid courses on sites like Lynda.com: 
It's hard to gauge if these people [video authors] are profes-
sionals or if this is an accurate way of doing it. So I use 
Lynda.com now, our company has a subscription for that and 
lots of my colleagues are using it. (P8) 
Feelings of social isolation 
Since most of our participants were domain experts in a non-
technical role, they tended to stay away from certain re-
sources because they felt uncomfortable, stressful, and isolat-
ed in environments where the target learners were perceived 
to be more experienced or even professional programmers. 
One of the participants who attended a bootcamp found it 
stressful to keep up with people who already had some 
knowledge of programming: 
Because my classmates were not newbies at what they were 
learning...the level that I had to try to reach to them [was 
hard] … I was constantly trying to catch up and understand. (P6) 
Despite the convenience of relying on experts, some partici-
pants described the social cost of bothering people who were 
already overworked by asking them naive questions. For 
example, one participant who was learning through Co-
decademy said that he would never ask any of his developer 
colleagues for help:  
I mean, I know any one of my colleagues could solve any of my 
problems, in about six seconds. But the point is not to ... They 
already have their own work to do and for me, this is again, 
it's not critical to what I do, and it's not worth spending the 
company resources to do that. And again, my friends know I 
don't code, so they don't want to help me with that. (P17) 
Sometimes when conversational programmers referred to an 

expert for help, they were hesitant to ask follow-up questions 
because they “did not want to look stupid” (P8). One partici-
pant even said that, “I pretend I kind of understand what he 
[the expert] is talking about and rather figure it out later by 
myself” (P4). It could also be embarrassing to ask an expert 
to re-explain a concept he or she had previously described:  
What I hate is like they explain it to me and I still don't get it. 
That's the worst. Because with the internet, it doesn't matter. I 
can keep googling. With people, it's just, I don't know, it's a little 
embarrassing. (P15) 
When using online learning resources and forums where 
there was less of a direct social cost, participants reported 
that sometimes they still felt like an outsider. None of the 
participants had contributed to developers’ communities like 
Stack Overflow. Their general perceptions were negative:  
[Stack Overflow] They're often populated by developers, not 
for the lay person. So again, the assumption that you under-
stand concepts and things already to a certain level is already 
inherent in there. And quite frankly, a lot of developers are 
jerks. It can be pretty toxic. Some people are even like “Okay, 
this is not the place you should ask”. (P13) 
Easy to forget details without a direct application 
Lastly, participants had feelings of failure when trying to 
learn programming as they tended to forget what they 
learned over time. 
For example, one participant who tried Codecademy to learn 
JavaScript said he would not do it again because he kept for-
getting the concepts without applying the knowledge: 
Programmers learn and write code on a regular basis. But if 
you don't use it, you just forget it. So why would I put the effort 
to learn something that would then just get incredibly rusty 
and then forget half of it in six months anyway? (P17) 
Similarly, another participant who took an introductory 
course to learn “fundamentals of HTML” on Lynda.com 
said that it was easy for him to forget the concepts because 
he skipped the coding exercises for the sake of time: 
They [Lynda.com] have optional exercises after each lecture... 
But I mean all I want is just some conceptual level understanding 
of what's going on. So I skipped the exercise. Sometimes you are 
just like “It looks easy. I'll just test it later” and then you never do. 
It turns out that I just forget the concepts very quick. (P8) 
In some cases, conversational programmers could retain 
what they learned for a short-term project or to satisfy an 
immediate need, but not beyond. For example, an entrepre-
neur who once hired developers to build a website for her 
company explained this phenomenon: 
I only learn it when I need to use it. And then I promptly forget 
it all. When we built our company's first website, I spent like 3 
days locked in my room to learn some basic stuff like Word-
Press, HTML. But I can't recall anything now at all because I 
didn't use it for a long time. (P1)  
Sometimes participants learned terminologies in technical 
conversations but would forget them after the first exposure. 
For example, one participant explained how he had to: 



 

...look up the term again a month later because I just skimmed 
the first paragraph to get a general idea [the first time] …but, 
I forgot a lot afterwards...(P13) 
In addition, one participant even felt nervous when she tried 
to recall the definition of a “database”, which she had 
learned recently from a coding bootcamp: 
My palms are sweating...I am just nervous because I learned 
[about databases] two weeks ago and I cannot remember 
much right now. I might have to sign up for the same course 
again. (P6) 
As shown above, there were six key reasons why conversa-
tional programmers developed feelings of failure in their 
pursuit of learning programming (summarized in Table 3).  

THE PARADOX OF LEARNING PROGRAMMING  
In the previous section, we examined how conversational 
programmers approached learning programming and how 
most of them felt like they failed, even after investing a lot of 
time and effort. However, our findings reveal an interesting 
paradox in the participants' perceptions of programming: 
despite feelings of failure in their attempts to improve tech-
nical conversations, the majority (19/23) still wanted to keep 
learning programming in the future if appropriate learning 
resources were available. For example, a product manager 
described this as, “a short path with acceptable opportunity 
cost” (P13). Another participant reported that she only want-
ed to learn what is related with her project in the future: 
I will definitely keep learning [programming] in the future, 
because then you have a better understanding of the terminol-
ogy that's being used, and it saves much work for your job. But 
I don't want to start everything from scratch, it's like a deep 
pool. I only want to learn what's related with my project. (P19) 
A common reason identified by the participants was that 
having some background in programming allowed them to 
better understand the work of their technical team members 
and build empathy for them:  
[programming] doesn't help so much with the technical conver-
sation... But I do have the feeling now that their [developers’] 
work is extremely hard after I learned. I think it's given me a lot 
more empathy on understanding that it’s not easy to do what you 
want just because you envision being able to do it. (P7)  
Another advantage of learning programming was having a 
better sense of being able to estimate implementation time:  
I feel like I'm much more generous in terms of time now. I un-
derstand it might take forever to write the small change. It's a 
struggle to write even a little bit of code. It's all about debug-
ging and unknown errors. (P8)  
Moreover, participants felt that they earned more respect 
from developers as well. Learning programming helped 
them gain credibility and build rapport with developers: 
The programming people tend to be not interested in talking to 
me [before]…Being a coder is a badge of honor, people re-
spect me more [now]. (P3) 
Although the majority of participants failed in learning pro-
gramming, a small number of them did achieve success using 

resources where they could connect with other conversational 
programmers. For example, a participant who was a visual 
designer actively searched and reached out to other designers 
who were learning programming: “I'm on a Slack group, and 
all of th ese Facebook groups and LinkedIn groups”. (P2) 
Another participant who worked as a library archivist and 
collaborated with developers on a project to digitize materials 
explained how she benefited by being in the same room as 
other archivists and librarians learning programming:  
I think we often don’t receive enough training…and so those 
sorts of [technical] workshops are great. It is a nice opportunity 
to work through problems with other people who also need this 
skill and don’t have the background in it. It's nice to have some-
one in a similar situation as me to talk to. (P11) 
In summary, our findings reveal a paradox in conversational 
programmers' perceptions of programming in that while they 
feel like they failed, they still acknowledged the value of 
learning programming under certain circumstances.  

DISCUSSION  
Our findings overall illustrate that the learning needs and 
constraints of conversational programmers had some simi-
larities to other adult learners who have rigid schedules 
[6,24,59] and prefer informal learning approaches [14,41]. 
However, we also found some critical differences among 
these groups of learners. For example, in contrast to end-
user programmers who may prefer resources with rich im-
plementation details and “ready-to-go” examples [15], con-
versational programmers found such details to be distracting 
and preferred to see more conceptual explanations. Although 
CS teachers also do not need to build artifacts [43], they dif-
fer from conversational programmers as their needs are still 
more syntax-oriented—they need to be able to teach low-
level concepts and create and grade coding assignments.  
In this paper, our main contribution has been in providing 
novel insights into how a broad range of professionals who 

Takes too much time: Investing in learning programming 
ended up requiring more time than what participants wanted to 
devote given their busy schedules.  
Too much focus on syntax and logic: Most of the resources 
focused on programming syntax and logic which did not directly 
help participants with their technical conversations. 
Explanations are not relevant: The conceptual and applica-
tion-related explanations desired by the participants were not 
always relevant nor available in the learning resources.   

Difficult to assess the content’s reliability: Participants did 
not feel confident enough to assess whether a given resource 
contained accurate and reliable content. 
Feelings of social isolation: Resources and learning environ-
ments that target CS students or professional programmers often 
created feelings of social isolation among participants. 
Easy to forget details: It was easy for participants to forget 
programming definitions and details because they did not apply 
what they learned directly on-the-job. 

Table 3. Six common reasons for feelings of failure among  
conversational programmers when using modern resources 

 



 

do not need to write code (e.g., archivist, artist, entrepreneur, 
psychologist, event manager, medical instructor and visual 
designer) use formal and informal approaches to learn pro-
gramming. We have also contributed insights into reasons 
why modern learning resources fail these conversational pro-
grammers in their pursuits to improve technical conversa-
tions. We now reflect on the mismatch of expectations that 
conversational programmers experience and how HCI and 
learner-centered design [24] approaches can play a pivotal 
role in better supporting this emerging learner population.  
A Mismatch of Expectations 
We learned that although almost all of the conversational 
programmers in our study were interested in learning pro-
gramming to improve their conversations, in the end, about 
75% of the participants did not feel that they achieved this 
goal. Their narratives illustrated a mismatch of expectations 
that manifested in two ways, described below. 
Is programming knowledge even necessary?    
The first mismatch occurred because conversational pro-
grammers often assumed that learning programming would 
help them with grounding in technical conversations. Our 
participants described their attempts in collectively learning 
over 20 different programming languages even though they 
did not need to write any code. However, their descriptions 
and challenges of technical conversations revealed that these 
learners were more interested in establishing a conceptual 
understanding of terminologies, benefits and limitations of 
technologies, and tradeoffs in software design and implemen-
tation decisions. Therefore, is pursuing programming even 
the right approach for conversational programmers?   
Future work could investigate why such misconceptions 
form about programming in the first place. Perhaps with all 
of the recent excitement around programming for all or 
computational thinking being popularized in the press [48], 
people tend to associate anything technical with program-
ming [16]. Another possibility is that people assume that 
just because they are talking to programmers, they need to 
understand the “programmers' language”. But, the kinds of 
expertise and vocabulary that developers possess can take 
years of education or experience to develop, so it is not 
realistic to expect newcomers to master all the concepts 
with introductory learning resources.  
On the other hand, if conversational programmers do not 
learn programming at all, is it even possible for them to 
understand technical decisions, tradeoffs, or higher-level 
concepts, such as machine learning or cloud-based architec-
ture? It may be the case that learning the basics of pro-
gramming and some technical jargon are important dimen-
sions of establishing this common ground that conversa-
tional programmers seek to establish [9,60].  
Is my chosen learning resource even appropriate? 
The second mismatch ensued when conversational program-
mers interacted with the same modern resources that are typ-
ically used by learners who want to eventually build artifacts 
or solve computational problems. Such resources often fol-

low a more structured syntax-oriented curriculum (known as 
“programming-first approach”) of introductory computer 
science programs in universities [61]. All of this investment 
in learning programming through these resources created a 
rabbit hole effect for conversational programmers as they 
were led down a path of struggling with programming syntax 
and all of the other issues that novice programmers encounter 
[34] while not getting much direct benefit for improving their 
technical conversations.   
Still, despite the mismatch in expectations and feelings of 
failure, the majority of conversational programmers wanted 
to keep learning programming if appropriate learning re-
sources were available, which suggests that HCI can play a 
key role in designing suitable learner-centered resources.   
Design Opportunities for Supporting Conversational 
Programmers 
Here we consider the design implications of our findings and 
how we can better support conversational programmers.  
Facilitating Discovery of Relevant and Reliable Content 
Given the challenges that conversational programmers face 
in spending time on learning resources and in sifting through 
irrelevant and unreliable search results, future research can 
look into facilitating discovery of relevant and reliable con-
tent. For example, we can explore how to create Wikipedia-
like curated overviews with small examples that are focused 
on specific application areas. The goal here should be to 
make them easily “skimmable” in a few minutes—similar 
approaches have recently been seen in resources such as wik-
iHow [62] that focus on small bite-sized tutorials. How can 
we create a wikiHow-like site for facilitating discovery of 
programming concepts, and how would this scale? 
At the same time, authoritativeness of learning resources is 
important for this learner population and “trial and error” 
[2,13,15,28] approaches that work for novice or end-user 
programmers do not work for conversational programmers. 
These learners may find little success in searching for pro-
gramming and debugging help in ad-hoc blogs and forums 
where they can plug-and-play solutions. Instead, conversa-
tional programmers can benefit from resources and expla-
nations that are endorsed by leaders in the field to have con-
fidence that they are high-quality materials. There are op-
portunities for future work to investigate who these leaders 
would be and how would they make contributions towards 
endorsing a particular resource.  
Explaining Concepts without Syntax and Logic 
A key challenge that our findings raise for the HCI commu-
nity to consider is, can we actually teach someone useful 
programming concepts without focusing on syntax and log-
ic? What would that even mean? What would be the ad-
vantages or disadvantages of doing so?  
A popular approach that has been explored in research and 
practice is the design of novice-friendly “drag-and-drop” [42] 
programming languages and systems such as Alice [11], 
Scratch [45], and Code.org [63] to make programming more 
attractive for children [39,57] and other novices [21]. How-



 

ever, none of our participants were familiar with such envi-
ronments and would likely not find them useful for improv-
ing their technical conversations because these approaches 
still largely focus on the mechanics of programming.  
Another approach may be to design courses with emphasis 
on more conceptual instruction of computing concepts with-
out writing code [2,20,35,40,56]. For example, Cornell Uni-
versity has recently experimented with a non-programming 
introduction to CS via concepts, such as in NLP and AI [35]. 
It may be possible to extend such an approach outside of the 
classroom to also teach conversational programmers useful 
concepts without getting into the mechanics of syntax. An-
other useful augmentation here may be to teach conversa-
tional programmers how to talk about a particular concept in 
the context of a real-world development scenario. For exam-
ple, some online dictionaries offer the ability to not just view 
the definition of a word, but to see how the word may be 
used in a sentence. It may be fruitful to explore how such 
interactive reference resources could be created for connect-
ing real-world context with programming-related concepts 
for conversational programmers.  
Generating Executive Summaries and Visual Explorations  
Given that conversational programmers may only have an 
ephemeral need to understand and apply some concepts, fu-
ture research can explore how to design interactive high-level 
executive summaries or allow for more visual explorations of 
such concepts. One approach could be presenting a compara-
tive or competitive analysis like an executive report contain-
ing the pros and cons to be delivered to a business executive 
to help them make decisions. For instance, such a summary 
could make it easy to glance at the pros and cons of neural 
networks or weigh the benefits of using Amazon’s vs. 
Google’s cloud services. 
At the code level, perhaps there is a need for more visual 
explorations like interactive neural net explorations [5], ex-
plorable explanations [64] or algorithm animation [4] to give 
learners interactive visual ways to learn to gain intuitions 
without writing any code, which is similar to the idea of data 
analysis tools or prototyping tools that allow people to ex-
plore ideas and possibilities without writing code [65,66].   
Building Conversational Programmers' Own Communities 
We found that conversational programmers expressed feelings 
of isolation when trying to learn from resources designed for 
professional or end-user programmers. As discussed above, 
there is some indication that the recommendations on learning 
resources from other programmers create a mismatch of ex-
pectations. Therefore, it would be worth exploring if the per-
ceptions of conversational programmers would be different if 
the recommendations came from other conversational pro-
grammers similar to them. There is an opportunity here for 
HCI/CSCW to explore the benefits and drawback of social 
and personalized recommendations for this learner group.   
One design opportunity may be in creating a welcoming 
community of like-minded peers and mentors, who are per-
haps not the stereotypical computer “geeks” or “insiders” as 

described by many of our participants. There already are 
learning communities emerging for certain non-traditional 
learners, such as scientists [58], CS teachers [44], and even 
product managers [9]. Similarly, we could build conversa-
tional programmers' own communities through formal work-
shops (e.g., dedicated bootcamps) or through online re-
sources and meetups. Learners can receive suggestions and 
mentorship from experienced conversational programmers 
who have gone through the same process or are currently 
going through it. These communities can perhaps evaluate 
existing resources from the perspective of their domain (e.g., 
similar work has been done to evaluate programming sys-
tems using techniques such as heuristic evaluation [33] ).  
Limitations and Future Work 
Our focus was only on perceptions and learning strategies; 
future work can use controlled studies to formally explore 
learning outcomes of different interventions and approaches. 
Although we had a diverse set of participants in terms of job 
roles and experiences, we did not explore gender, occupa-
tion-specific learning goals, or other demographic differences 
in responses. In addition, since our recruitment criteria ex-
plicitly mentioned an attempt to learn programming, we did 
not have the chance to investigate "conversational technical 
non-programmers", who did technical communication with 
programmers but never attempted to learn programming. 
This population is worthwhile to study in the future. 
More importantly, when we talk about “grounding in com-
munication” [10], there are actors on both sides (technical 
and non-technical) and our results so far paint a picture from 
only one side. It should not be solely the job of conversation-
al programmers to make an investment in extra on-the-job 
learning. Great software engineers should be both productive 
at the job and good at communicating [37,50]. Moreover, 
they should not only focus on effectively working with other 
technical people, but also on better explaining their decisions 
to people who are non-engineers. Our study opens a path for 
future research to bridge the gap in technical conversations 
from developers' perspectives as well. 
CONCLUSION 
In conclusion, we have contributed insights from conversa-
tional programmers across a wide range of job roles who ex-
perience challenges and try to learn programming to improve 
their conversations. In particular, we have described their 
learning approaches and struggles and highlighted six reasons 
why modern resources designed for traditional learners, such 
as CS students and professional programmers, are not appro-
priate for this learner population. We have also highlighted 
ways in which HCI can play a pivotal role in designing learn-
ing resources and interactions that are suitable not only for 
conversational programmers but also other members of socie-
ty who are increasingly wanting to develop programming and 
technical literacy.  

ACKNOWLEDGMENTS 
This research was supported in part by the Natural Science 
and Engineering Research Council of Canada (NSERC). We 
thank Prashant Shashikumar and Azadeh Zamani Esfahani. 



 

REFERENCES 
1. Khaled Albusays and Stephanie Ludi. 2016. Eliciting 

Programming Challenges Faced by Developers with 
Visual Impairments: Exploratory Study. In Proceedings 
of the 9th International Workshop on Cooperative and 
Human Aspects of Software Engineering (CHASE ’16), 
82–85. https://doi.org/10.1145/2897586.2897616 

2. Tim Bell, Jason Alexander, Isaac Freeman, and Mick 
Grimley. 2009. Computer science unplugged:school 
students doing real computing without computers. New 
Zealand Journal of Applied Computing and Information 
Technology 13, 1: 20–29. 

3. Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira 
Dontcheva, and Scott R. Klemmer. 2009. Two Studies 
of Opportunistic Programming: Interleaving Web Forag-
ing, Learning, and Writing Code. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing 
Systems (CHI ’09), 1589–1598. 
https://doi.org/10.1145/1518701.1518944 

4. Marc H. Brown. 1988. Algorithm Animation. MIT Press, 
Cambridge, MA, USA. 

5. Shan Carter and Daniel Smilkov. Tensorflow — Neural 
Network Playground. Retrieved January 5, 2018 from 
http://playground.tensorflow.org 

6. Polina Charters, Michael J. Lee, Amy J. Ko, and Dastyni 
Loksa. 2014. Challenging Stereotypes and Changing At-
titudes: The Effect of a Brief Programming Encounter 
on Adults’ Attitudes Toward Programming. In Proceed-
ings of the 45th ACM Technical Symposium on Comput-
er Science Education (SIGCSE ’14), 653–658. 
https://doi.org/10.1145/2538862.2538938 

7. Parmit K. Chilana, Celena Alcock, Shruti Dembla, An-
son Ho, Ada Hurst, Brett Armstrong, and Philip J. Guo. 
2015. Perceptions of non-CS majors in intro program-
ming: The rise of the conversational programmer. In 
2015 IEEE Symposium on Visual Languages and Hu-
man-Centric Computing (VL/HCC), 251–259. 
https://doi.org/10.1109/VLHCC.2015.7357224 

8. Parmit K. Chilana, Rishabh Singh, and Philip J. Guo. 
2016. Understanding Conversational Programmers: A 
Perspective from the Software Industry. In Proceedings 
of the 2016 CHI Conference on Human Factors in 
Computing Systems (CHI ’16), 1462–1472. 
https://doi.org/10.1145/2858036.2858323 

9. Ellen Chisa. 2014. Evolution of the Product Manager. 
Queue 12, 9: 40:40–40:47. 
https://doi.org/10.1145/2674600.2683579 

10. Herbert H. Clark and Susan E. Brennan. 1991. Ground-
ing in Communication. In Perspectives on Socially 
Shared Cognition, Lauren Resnick, Levine B, M. John, 
Stephanie Teasley and D. (eds.). American Psychologi-
cal Association, 13–1991. 

11. Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. 
Alice: A 3-D Tool for Introductory Programming Con-
cepts. In Proceedings of the Fifth Annual CCSC North-
eastern Conference on The Journal of Computing in 
Small Colleges (CCSC ’00), 107–116. 

12. Juliet Corbin and Anselm Strauss. 2014. Basics of Qual-
itative Research. SAGE. 

13. Sarah D’Angelo and Andrew Begel. 2017. Improving 
Communication Between Pair Programmers Using 
Shared Gaze Awareness. In Proceedings of the 2017 
CHI Conference on Human Factors in Computing Sys-
tems (CHI ’17), 6245–6290. 
https://doi.org/10.1145/3025453.3025573 

14. Brian Dorn and Mark Guzdial. 2006. Graphic Designers 
Who Program as Informal Computer Science Learners. 
In Proceedings of the Second International Workshop 
on Computing Education Research (ICER ’06), 127–
134. https://doi.org/10.1145/1151588.1151608 

15. Brian Dorn and Mark Guzdial. 2010. Learning on the 
Job: Characterizing the Programming Knowledge and 
Learning Strategies of Web Designers. In Proceedings 
of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI ’10), 703–712. 
https://doi.org/10.1145/1753326.1753430 

16. Chase Felker, Meg Charlton, and Joshua Oliver. 2013. 
Maybe Not Everybody Should Learn to Code. Slate. Re-
trieved January 5, 2018 from 
http://www.slate.com/articles/technology/future_tense/2
018/01/there_is_no_such_thing_as_the_blockchain.html 

17. Sally Fincher. 2015. What Are We Doing when We 
Teach Computing in Schools? Commun. ACM 58, 5: 
24–26. https://doi.org/10.1145/2742693 

18. J. Michael Fitzpatrick, Ákos Lédeczi, Gayathri Nara-
simham, Lee Lafferty, Réal Labrie, Paul T. Mielke, Aat-
ish Kumar, and Katherine A. Brady. 2017. Lessons 
Learned in the Design and Delivery of an Introductory 
Programming MOOC. In Proceedings of the 2017 ACM 
SIGCSE Technical Symposium on Computer Science 
Education (SIGCSE ’17), 219–224. 
https://doi.org/10.1145/3017680.3017730 

19. Andrea Forte and Mark Guzdial. 2005. Motivation and 
Non-Majors in Computer Science: Identifying Discrete 
Audiences for Introductory Courses. IEEE Transactions 
on Education 48, 2: 248–253. 
https://doi.org/10.1109/TE.2004.842924 

20. Kenneth J. Goldman. 2004. A Concepts-first Introduc-
tion to Computer Science. In Proceedings of the 35th 
SIGCSE Technical Symposium on Computer Science 
Education (SIGCSE ’04), 432–436. 
https://doi.org/10.1145/971300.971446 

21. Paul Gross and Kris Powers. 2005. Evaluating Assess-
ments of Novice Programming Environments. In Pro-
ceedings of the First International Workshop on Compu-
ting Education Research (ICER ’05), 99–110. 
https://doi.org/10.1145/1089786.1089796 

22. Philip J. Guo. 2017. Older Adults Learning Computer 
Programming: Motivations, Frustrations, and Design 
Opportunities. In Proceedings of the 2017 CHI Confer-
ence on Human Factors in Computing Systems (CHI 
’17), 7070–7083. 
https://doi.org/10.1145/3025453.3025945 



 

23. Mark Guzdial. 2003. A Media Computation Course for 
Non-majors. In Proceedings of the 8th Annual Confer-
ence on Innovation and Technology in Computer Sci-
ence Education (ITiCSE ’03), 104–108. 
https://doi.org/10.1145/961511.961542 

24. Mark Guzdial. 2015. Learner-Centered Design of Compu-
ting Education: Research on Computing for Everyone. 
Synthesis Lectures on Human-Centered Informatics 8, 6: 
1–165. 
https://doi.org/10.2200/S00684ED1V01Y201511HCI033 

25. Mark Guzdial and Andrea Forte. 2005. Design Process 
for a Non-majors Computing Course. In Proceedings of 
the 36th SIGCSE Technical Symposium on Computer 
Science Education (SIGCSE ’05), 361–365. 
https://doi.org/10.1145/1047344.1047468 

26. Carolin D. Hardin and Matthew Berland. 2016. Learning 
to Program Using Online Forums: A Comparison of 
Links Posted on Reddit and Stack Overflow (Abstract 
Only). In Proceedings of the 47th ACM Technical Sym-
posium on Computing Science Education (SIGCSE ’16), 
723–723. https://doi.org/10.1145/2839509.2851051 

27. Kyle J. Harms, Evan Balzuweit, Jason Chen, and Caitlin 
Kelleher. 2016. Learning Programming from Tutorials 
and Code Puzzles: Children’s Perceptions of Value. In 
2016 IEEE Symposium on Visual Languages and Hu-
man-Centric Computing (VL/HCC), 59–67. 
https://doi.org/10.1109/VLHCC.2016.7739665 

28. Cruz Izu, Amali Weerasinghe, and Cheryl Pope. 2016. 
A Study of Code Design Skills in Novice Programmers 
Using the SOLO Taxonomy. In Proceedings of the 2016 
ACM Conference on International Computing Educa-
tion Research (ICER ’16), 251–259. 
https://doi.org/10.1145/2960310.2960324 

29. Geoffrey James. 2017. Why Coding Bootcamps Don’t 
Work. Inc.com. Retrieved January 5, 2018 from 
https://www.inc.com/geoffrey-james/why-coding-
bootcamps-dont-work.html 

30. Mary Beth Kery, Amber Horvath, and Brad Myers. 
2017. Variolite: Supporting Exploratory Programming 
by Data Scientists. In Proceedings of the 2017 CHI Con-
ference on Human Factors in Computing Systems (CHI 
’17), 1265–1276. 
https://doi.org/10.1145/3025453.3025626 

31. Ada S. Kim and Amy J. Ko. 2017. A Pedagogical Anal-
ysis of Online Coding Tutorials. In Proceedings of the 
2017 ACM SIGCSE Technical Symposium on Computer 
Science Education (SIGCSE ’17), 321–326. 
https://doi.org/10.1145/3017680.3017728 

32. Amy J. Ko, Robin Abraham, Laura Beckwith, Alan 
Blackwell, Margaret Burnett, Martin Erwig, Chris Scaf-
fidi, Joseph Lawrance, Henry Lieberman, Brad Myers, 
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and 
Susan Wiedenbeck. 2011. The State of the Art in End-
user Software Engineering. ACM Comput. Surv. 43, 3: 
21:1–21:44. https://doi.org/10.1145/1922649.1922658 

33. Michael Kölling and Fraser McKay. 2016. Heuristic 
Evaluation for Novice Programming Systems. Trans. 

Comput. Educ. 16, 3: 12:1–12:30. 
https://doi.org/10.1145/2872521 

34. Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Jä-
rvinen. 2005. A Study of the Difficulties of Novice Pro-
grammers. In Proceedings of the 10th Annual SIGCSE 
Conference on Innovation and Technology in Computer 
Science Education (ITiCSE ’05), 14–18. 
https://doi.org/10.1145/1067445.1067453 

35. Lillian Lee. 2002. A Non-Programming Introduction to 
Computer Science via NLP, IR, and AI. In Proceedings 
of the ACL-02 Workshop on Effective Tools and Meth-
odologies for Teaching Natural Language Processing 
and Computational Linguistics - Volume 1 (ETMTNLP 
’02), 33–38. https://doi.org/10.3115/1118108.1118113 

36. Michael J. Lee and Amy J. Ko. 2015. Comparing the 
Effectiveness of Online Learning Approaches on CS1 
Learning Outcomes. In Proceedings of the Eleventh An-
nual International Conference on International Compu-
ting Education Research (ICER ’15), 237–246. 
https://doi.org/10.1145/2787622.2787709 

37. Paul Luo Li, Amy J. Ko, and Jiamin Zhu. 2015. What 
Makes a Great Software Engineer? In Proceedings of 
the 37th International Conference on Software Engi-
neering - Volume 1 (ICSE ’15), 700–710. 

38. Yihan Lu, I-Han Hsiao, and Qi Li. 2016. Exploring 
Online Programming-Related Information Seeking Be-
haviors via Discussion Forums. In 2016 IEEE 16th In-
ternational Conference on Advanced Learning Technol-
ogies (ICALT), 283–287. 
https://doi.org/10.1109/ICALT.2016.63 

39. John H. Maloney, Kylie Peppler, Yasmin Kafai, Mitchel 
Resnick, and Natalie Rusk. 2008. Programming by 
Choice: Urban Youth Learning Programming with 
Scratch. In Proceedings of the 39th SIGCSE Technical 
Symposium on Computer Science Education (SIGCSE 
’08), 367–371. 
https://doi.org/10.1145/1352135.1352260 

40. Joe Marks, William Freeman, and Henry Leitner. 2001. 
Teaching Applied Computing Without Programming: A 
Case-based Introductory Course for General Education. 
In Proceedings of the Thirty-second SIGCSE Technical 
Symposium on Computer Science Education (SIGCSE 
’01), 80–84. https://doi.org/10.1145/364447.364547 

41. Victoria J. Marsick and Karen E. Watkins. 2001. Infor-
mal and Incidental Learning. New Directions for Adult 
and Continuing Education 2001, 89: 25–34. 
https://doi.org/10.1002/ace.5 

42. Paul Medlock-Walton, Kyle J. Harms, Eileen T. Kraem-
er, Karen Brennan, and Daniel Wendel. 2014. Blocks-
based Programming Languages: Simplifying Program-
ming for Different Audiences with Different Goals. In 
Proceedings of the 45th ACM Technical Symposium on 
Computer Science Education (SIGCSE ’14), 545–546. 
https://doi.org/10.1145/2538862.2538873 

43. Lijun Ni and Mark Guzdial. 2012. Who AM I?: Under-
standing High School Computer Science Teachers’ Pro-
fessional Identity. In Proceedings of the 43rd ACM 



 

Technical Symposium on Computer Science Education 
(SIGCSE ’12), 499–504. 
https://doi.org/10.1145/2157136.2157283 

44. Lijun Ni, Mark Guzdial, Allison Elliott Tew, Briana 
Morrison, and Ria Galanos. 2011. Building a Communi-
ty to Support HS CS Teachers: The Disciplinary Com-
mons for Computing Educators. In Proceedings of the 
42Nd ACM Technical Symposium on Computer Science 
Education (SIGCSE ’11), 553–558. 
https://doi.org/10.1145/1953163.1953319 

45. Mitchel Resnick, John Maloney, Andrés Monroy-
Hernández, Natalie Rusk, Evelyn Eastmond, Karen 
Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, 
Brian Silverman, and Yasmin Kafai. 2009. Scratch: Pro-
gramming for All. Commun. ACM 52, 11: 60–67. 
https://doi.org/10.1145/1592761.1592779 

46. Christopher Scaffidi, Aniket Dahotre, and Yan Zhang. 
2012. How Well Do Online Forums Facilitate Discus-
sion and Collaboration Among Novice Animation Pro-
grammers? In Proceedings of the 43rd ACM Technical 
Symposium on Computer Science Education (SIGCSE 
’12), 191–196. 
https://doi.org/10.1145/2157136.2157195 

47. Christopher Scaffidi, Mary Shaw, and Brad Myers. 
2005. Estimating the Numbers of End Users and End 
User Programmers. In 2005 IEEE Symposium on Visual 
Languages and Human-Centric Computing 
(VL/HCC’05), 207–214. 
https://doi.org/10.1109/VLHCC.2005.34 

48. Esther Shein. 2014. Should Everybody Learn to Code? 
Commun. ACM 57, 2: 16–18. 
https://doi.org/10.1145/2557447 

49. Jonathan Sillito, Frank Maurer, Seyed Mehdi Nasehi, 
and Chris Burns. 2012. What Makes a Good Code Ex-
ample?: A Study of Programming Q&A in StackOver-
flow. In Proceedings of the 2012 IEEE International 
Conference on Software Maintenance (ICSM) (ICSM 
’12), 25–34. 
https://doi.org/10.1109/ICSM.2012.6405249 

50. Edward K. Smith, Christian Bird, and Thomas Zim-
mermann. 2016. Beliefs, Practices, and Personalities of 
Software Engineers: A Survey in a Large Software 
Company. In Proceedings of the 9th International 
Workshop on Cooperative and Human Aspects of Soft-
ware Engineering (CHASE ’16), 15–18. 
https://doi.org/10.1145/2897586.2897596 

51. Elliot Soloway, Mark Guzdial, and Kenneth E. Hay. 
1994. Learner-centered Design: The Challenge for HCI 
in the 21st Century. interactions 1, 2: 36–48. 
https://doi.org/10.1145/174809.174813 

52. Sabine Sonnentag, Cornelia Niessen, and Sandra Ohly. 
2004. Learning at work: training and development. In-
ternational review of industrial and organizational psy-
chology 19: 249–290. 

53. Phit-Huan Tan, Choo-Yee Ting, and Siew-Woei Ling. 
2009. Learning Difficulties in Programming Courses: 
Undergraduates’ Perspective and Perception. In Pro-

ceedings of the 2009 International Conference on Com-
puter Technology and Development - Volume 01 
(ICCTD ’09), 42–46. 
https://doi.org/10.1109/ICCTD.2009.188 

54. Kyle Thayer and Amy J. Ko. 2017. Barriers Faced by 
Coding Bootcamp Students. In Proceedings of the 2017 
ACM Conference on International Computing Educa-
tion Research (ICER ’17), 245–253. 
https://doi.org/10.1145/3105726.3106176 

55. Christoph Treude, Ohad Barzilay, and Margaret-Anne 
Storey. 2011. How Do Programmers Ask and Answer 
Questions on the Web? (NIER Track). In 2011 33rd In-
ternational Conference on Software Engineering 
(ICSE), 804–807. 
https://doi.org/10.1145/1985793.1985907 

56. Mark Urban-Lurain and Donald J. Weinshank. 2000. Is 
there a role for programming in non-major computer 
science courses? In 30th Annual Frontiers in Education 
Conference. Building on A Century of Progress in Engi-
neering Education. Conference Proceedings (IEEE Cat. 
No.00CH37135), T2B/7-T2B11 vol.1. 
https://doi.org/10.1109/FIE.2000.897590 

57. Linda Werner, Shannon Campe, and Jill Denner. 2012. 
Children learning computer science concepts via Alice 
game-programming. In Proceedings of the 43rd ACM 
technical symposium on Computer Science Education, 
427–432. 

58. Greg Wilson. 2006. Software Carpentry: Getting Scien-
tists to Write Better Code by Making Them More Pro-
ductive. Computing in Science Engineering 8, 6: 66–69. 
https://doi.org/10.1109/MCSE.2006.122 

59. Chi Zhang and Guangzhi Zheng. 2013. Supporting 
Adult Learning: Enablers, Barriers, and Services. In 
Proceedings of the 14th Annual ACM SIGITE Confer-
ence on Information Technology Education (SIGITE 
’13), 151–152. 
https://doi.org/10.1145/2512276.2512323 

60. Will Non-Technical Product Managers Become Obso-
lete? Retrieved January 5, 2018 from 
https://www.forbes.com/sites/quora/2017/01/03/will-
non-technical-product-managers-become-obsolete 

61. ACM Curricula Recommendations. Retrieved January 5, 
2018 from http://www.acm.org/education/curricula-
recommendations 

62. wikiHow - How to do anything. Retrieved January 5, 
2018 from http://www.wikihow.com/Main-Page 

63. Anybody can learn | Code.org. Retrieved January 5, 
2018 from https://code.org/ 

64. Explorable Explanations. Retrieved January 5, 2018 
from http://explorabl.es/ 

65. Business Intelligence and Analytics | Tableau Software. 
Retrieved January 5, 2018 from 
https://www.tableau.com/ 

66. Prototypes, Specifications, and Diagrams in One Tool | 
Axure Software. Retrieved January 5, 2018 from 
https://www.axure.com/ 

 


