Diff in the Loop: Supporting Data Comparison in Exploratory
Data Analysis

April Yi Wang
aprilww@umich.edu
The University of Michigan
Ann Arbor, Michigan, USA

Robert DeLine

rdeline@microsoft.com
Microsoft Research
Redmond, Washington, USA

ABSTRACT

Data science is characterized by evolution: since data science is
exploratory, results evolve from moment to moment; since it can be
collaborative, results evolve as the work changes hands. While ex-
isting tools help data scientists track changes in code, they provide
less support for understanding the iterative changes that the code
produces in the data. We explore the idea of visualizing differences
in datasets as a core feature of exploratory data analysis, a concept
we call Diff in the Loop (DITL). We evaluated DITL in a user study
with 16 professional data scientists and found it helped them un-
derstand the implications of their actions when manipulating data.
We summarize these findings and discuss how the approach can be
generalized to different data science workflows.

CCS CONCEPTS

« Human-centered computing — Visualization systems and
tools; Interactive systems and tools.

KEYWORDS

data science programming, exploratory data analysis, data compar-
ison

ACM Reference Format:

April Yi Wang, Will Epperson, Robert DeLine, and Steven M. Drucker. 2022.
Diff in the Loop: Supporting Data Comparison in Exploratory Data Analysis.
In CHI Conference on Human Factors in Computing Systems (CHI "22), April
29-May 5, 2022, New Orleans, LA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3491102.3502123

1 INTRODUCTION

Data scientists try different transformations, aggregations, and fil-
ters until their data is in a state appropriate for the given task [26].
When producing models from their data, data scientists similarly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9157-3/22/04...$15.00
https://doi.org/10.1145/3491102.3502123

Will Epperson
willepp@cmu.edu
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Steven M. Drucker
sdrucker@microsoft.com
Microsoft Research
Redmond, Washington, USA

iterate on different model features, architectures, and hyperparam-
eters [1]. Existing tools for tracking changes typically only tackle
half of the problem: differences in code. Development environments,
for example, allow users to compare differences in notebook code
cells between committed revisions [50], and Verdant reduces the
burden of foraging code editing histories in Jupyter notebooks [25].
Yet comparing versions of data throughout an analysis is just as
important [17]. Code differences do not always reveal data differ-
ences. For example, removing missing values from one column of
a dataset may also affect the distributions of the dataset’s other
columns. To track the effect that different lines of code have on the
data currently requires data scientists to take the initiative to write
additional code to browse or plot the data.

Recent work has begun to explore ways for analysts to under-
stand and explain data iterations. Datamations uses animation to
explain data transformation pipelines [36], and Chameleon allows
analysts to compare data iterations simultaneously with model per-
formance [21]. However, these approaches explain data differences
after analysis has been done. In this paper, we explore adding visual-
izations of data differences as a core feature of tools for exploratory
data analysis, a concept we call Diff in the Loop (DITL). Our DITL
prototype stores a snapshot of the code and runtime variables as
users make changes in the code editor. Using a table-based diff view
(Fig. 1), users can either compare different datasets or compare the
same dataset at different snapshots. When comparing datasets A
and B, the user can choose three ways to visualize the differences
in each column: plotting histograms of A and B side by side; over-
laying histograms of A and B, with cross-fading between them; or
as a histogram of the user’s chosen dataset (either A or B), plus
a plot of the difference in the histogram bucket counts (either A
subtracts B or B subtracts A). For each column, the DITL prototype
also shows differences in descriptive statistics that are appropriate
for that column’s data (categorical or quantitative). The DITL view
is designed to support both the explicit comparison of datasets
and implicitly monitoring the evolution of a dataset as the user
transforms it.

For example, Fig. 1 illustrates the effect of filtering a car dataset
named df to those rows whose Cylinders column is greater than
4. The summary under the Cylinders column directly reflects this
change: the top "view" plot shows a histogram of the current values
(all above 4); the bottom "delta" plot shows that this step has the
effect of removing rows with values 3 and 4, but keeping rows

https://doi.org/10.1145/3491102.3502123
https://doi.org/10.1145/3491102.3502123

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

1 import pandas as pd
Current 2 from vega_datasets import data
3
4 df = data.cars()
yXzque Edited at 17:50:13 5
6 df_us = df[df['Origin'] == 'USA']
knggax Edited at 17:49:49 7 df_jp = df[df[*0rigin'] == 'Japan']
8 df_jp.head()
9
axlaSk Edited at 17:49:31 10 df
abe df_jp
abc df_us
Current Dataframe mm7ij9 v df v

Display All Columns Different

Name Miles_per_Gallon

view view
200

count

100-|

count

| 0+
. S

® ® ® >

bin_start, bin_end

©
delta

delta
50

of -m —
-0

o ©®
flag @current Ooriginal

Current [mm7ij9:df]
Original [yxzque:df]

0w
oy
S T

flag @current OOriginal
Current [mm7ij9:df]

Original [yxzque:df] flag @Current
Current [mm7ij9:df]
Original [yxzque:df]

Missing 0% Missing 2% 3% Missing 0%

#Unique 148 3% Mean 17.38 23:5% Mean 709 548
Median 17.00 23:60 Median 8.00 466
sD 4.38 782 sD 102 474

chevrolet chevelle malibu

buick skylark 320

Wang et al.

1 1 import pandas as pd
Current 2 2 from vega_datasets import data
3 3
. 4 4 df = data.cars()
mm71ij9 Edited at 17:55:29 5 5
6 6 df_us = df[df['Origin'] == 'USA']
yxzque Edited at 17:50:13 7 7 df_]lp = df[df['Origin'] == 'Japan']
8 8 df_jp.head()
9+
knggax Edited at 17:49:49 10+df = df[df['Cylinders'] > 4]
axlaS5k Edited at 17:49:31
Original Dataframe yxzque v df v
Displacement @ Horsepower @
current

Cylinders @
view

—

delta

Ooriginal

®
bin_start, bin_end

H

g

—
B P D P S D g
Horsepower (binned)

0
@

Count of Records
Count of Records

.
IR S g

Displacement (binned)
CurrToorig ===l

Current [mm7ij9:df]
Original [yxzque:df]

1 °

03 original

0
DD B P B 0 P P 2P 0
Horsepower (binned)

Count of Records

Current [mm7ij9:df]
Original [yxzque:df]

Missing 0% Missing 0% %

Mean 287.39 19478 Mean 13291 10568

Median 302.00 45%66 Median 130.00 95:66

sD 36.78 3877

sD 76.66 16492

307 130

350 165

Figure 1: As users iterate on their data during analysis, they can use DITL to compare data snapshots. Every time users success-
fully execute code we save a snapshot (A). Users can compare the code using traditional code diffing tools. Users can also use
DITL to compare data iterations with interactive visualizations, descriptive statistics, and data preview (B). User can choose
three ways to visualize the differences in each column: delta view (C), opacity view (D), and parallel view (E).

with values 5, 6, and 8. This column’s summary confirms that the
filter had the intended effect. Further, the DITL view also shows
the effect this filtering step had on the other columns. For example,
the distribution of Miles_per_Gallon lost the higher end of its
distribution, with its median lowering from 23 to 17. Meanwhile,
the columns Displacement and Horsepower lost the lower ends of
their distributions. By having these data differences shown during
exploratory data analysis, the user can maintain awareness of the
effects that code has on the dataset as a whole, not just on columns
mentioned in the code. Today, such awareness would require both
the initiative and extra effort to write the code oneself to produce
the plots and summaries.

We evaluated DITL in a user study with 16 professional data sci-
entists, where participants were asked to finish typical data science
programming tasks. They found DITL to be useful for tracking
and understanding data changes. Furthermore, DITL improved
their awareness of the side effects of some coding activities, guided
them towards insights into the data, and reduced their workload

for given data science tasks. We discuss the potential to integrate
DITL in various data science programming tools and to generalize
this approach for tracking changes in user-generated charts. To
summarize, our contribution is twofold:

o A demonstration of the benefit of elevating data differences
through visualizations to a core feature in a data science
programming environment;

o Insights into users’ needs and uses for leveraging both code
and data differences during exploratory data analytic work-
flows through a user study with 16 data scientists.

2 BACKGROUND AND RELATED WORK

2.1 Supporting Exploratory Programming

In his 1977 book, Tukey describes exploratory analysis as “detec-
tive work” [49, p. 1] where analysts must iteratively create, refine,
and explore hypotheses about their data. This pithy description
is equally apt for modern data science, where the exploration of
the different facets of data is one of the defining characteristics

Diff in the Loop: Supporting Data Comparison in Exploratory Data Analysis

[1, 2, 18, 20]. Today, data scientists still spend up to 80% of their
time doing data wrangling tasks like cleaning, filtering, and format-
ting data tables before they can begin further analysis [7].

In order to support the flexible programming needs in data sci-
ence, tools like Jupyter Notebook [35] allow users to interleave
code with documentation to aid explanations. Observable [32] and
Glinda [10] leverage live programming to provide immediate feed-
back and keep notebook results consistent. Moreover, online data
science programming tools like Google Colab [16] and DeepNote
[8] allow multiple users to edit the notebook together and execute
the code in a shared environment. Other tools enhance the notebook
programming environment by providing rich history interaction
[24] or visualization provenance [55]. However, the ability to eas-
ily compare versions of data in notebooks or other exploratory
programming environments remains a challenge.

Visual Analytics systems help data scientists explore their data
visually with custom visualizations [11, 43] or recommendations
[44, 53, 54]. While these systems allow programmers to visualize a
single iteration of their data at a certain point in time, DITL focuses
on comparing versions of data across iterations. Most similar to our
work are Chameleon [21] and Boxer [15]. Chameleon focuses on
the context of data iterations as it relates to model development and
thus prioritizes shifts in feature distributions or train and test splits,
while Boxer focuses on comparing changes for classification results.
However, DITL demonstrates techniques that can be used to show
data iterations for many different types of data transformations and
focuses on demonstrating the benefit of including data iteration in
a broader set of data analysis tasks.

2.2 Making Sense of the Changes

Data scientists often leverage version control systems to track code
and output changes. However, popular tools like GitHub [12] com-
pare notebooks as JSON files, making changes hard to read and
understand. ReviewNB [37] and VS Code [50] improve the readabil-
ity of the notebook diffs by rendering code diffs and output diffs
side-by-side in an intelligible format. Additionally, some online
data science programming tools allow code change tracking for
incremental user edits [8, 16]. Our work extended the concept of
diffing and versioning control from code assets to data tables.

Various tools demonstrate the benefits of interaction with anal-
ysis histories during exploratory programming. Kery et al. [25]
designed an algorithmic and visualization approach for finding past
exploration paths in the long editing histories of computational
notebooks; Head et al. [19] used program slicing to gather relevant
editing histories into a minimal notebook; Wang et al. [52] pro-
posed connecting team chat messages with code edits to aid in the
explanation of editing logs. Additionally, animation has been used
to communicate analysis pipelines and history [36], or to make
the relationships between two visualizations more clear [27, 47].
DITL builds on these previous approaches by elevating data table
differences as a primary concern during analysis.

Comparing and visualizing differences has previously been ex-
plored in context of dashboards or static tabular datasets [13, 14, 29—
31, 42]. Niederer et al. proposed interactive comparison tools to
visualize changes in tabular datasets [31]. Srinivasan et al. found
that explicitly visualizing the differences between two bar charts

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

was most effective for comparison [42]. This explicit difference
visualization inspired our delta view presented in Section 4.4.3.
Furthermore, Gleicher presents three design strategies to support
comparison between two datasets through visualizations: juxtapo-
sition of the datasets, superposition of the datasets, and explicitly
encoding the relations [13, 14]. We employ all three of these designs
in our visualizations of data table differences.

Finally, work from the databases community has proposed the
Data Diff problem as finding the best transformation from one
dataset to another, and present a tool to find such transformations
[45]. Our work differs from this approach in that we assume that
an analyst has full access to the code that produced two datasets.
Therefore we do not focus on finding a transformation function but
rather on presenting the changes in data points affected by these
transformations.

3 DESIGN MOTIVATIONS

To motivate the problem and guide the design, we present three typ-
ical usage scenarios that demonstrate how showing both code and
data differences would be useful during exploratory data analysis.

3.1 Understanding the Impact of Code Changes
in Debugging

In exploratory data analysis, data scientists write code to replace
values in data tables, transform and combine data tables, or query
subsets of data tables. Debugging data science code involves both
ensuring that code changes compile, but that they also produce ex-
pected results [38]. However, existing data science code debuggers
provide limited support for probing into the impact of code changes
[4, 28]. Data science programmers often need to formulate tempo-
rary code queries to inspect data tables, which are likely to become
stale or commented code that reduces the readability of the analysis
scripts or notebooks [39]. Manual inspection is often performed on
demand so analysts may miss unexpected impacts if they do not
thoroughly explore the effects of code changes. Therefore, it is criti-
cal to inspect differences in both code and data throughout analysis.
We believe that showing both code and data differences in data
science programming environments can directly aid debugging.

3.2 Gaining Insights in Data Through
Comparisons

Data scientists must make decisions throughout exploratory data
analysis. Which features should be taken into consideration? How
should null values be filled in? Does it matter if this part of the data
is dropped? These decisions require making comparisons between
whether or not a certain step improves the analysis. As opposed
to comparing other types of variables, comparing data tables is
exploratory and open-ended. Data scientists often need to tailor
the comparison strategy according to the task. When tuning hy-
perparameters, data scientists must formulate a scoring function to
compare the quality of the generated data tables. In model devel-
opment data scientists must consider shifts in feature distribution,
train test splits, and model performance when comparing data
iterations [21]. In addition, understanding differences in model per-
formance often requires data scientists to consider beyond simply
aggregating performance statistics. Comparing between data tables

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

of the results can give them new insights on regions of impact on
model changes. These examples demonstrate how comparison is
an inherent task within exploratory data analysis.

3.3 Improving Awareness in Collaboration

Lastly, comparing data tables improves data scientists awareness of
each others’ work in collaborative settings. Data scientists rely on
collaboration to improve the quality of their work [56]. Tracking
and managing versions of scripts, artifacts, and documentation can
help data scientists improve the efficiency of collaboration, reduce
duplicated work, and avoid interference with each other [51]. Code
versioning and editing sharing mechanisms (e.g., Git) in traditional
software engineering can help data scientists managing code itera-
tions when handing off work. However, it is not straightforward
for data scientists to interpret the impact of code changes unless
they execute various versions of code and inspect the data tables
thoroughly. We believe that showing and tracking both code and
data changes can augment the existing data science collaboration
tools by improving awareness of changes.

4 SYSTEM DESIGN

To address these use cases, we present DITL, a process of inspecting
and comparing versions of data tables using interactive visualiza-
tions. We integrate the design into a simplified notebook experience
so that we can examine how data scientists use it for comparing
data tables. We choose to implement the simplified data science
programming environment to highlight the utility of incorporat-
ing data table differences during exploratory data analysis without
the distraction of other programming features included in existing
tools.

4.1 Overview of DITL Study Apparatus

Figure 2 shows an overview of DITL study apparatus. As opposed
to Jupyter notebooks, it has a single code editor for editing and
running code. Users can make changes in the code editor (Figure
2B) or view the historical contents in previous edits. A snapshot
(Figure 2A) is saved upon successful execution, which tracks the
code content, output, runtime variable values, and a timestamp.
Each snapshot is marked with a unique hashtag to aid in history
navigation. Below the code editor, users can switch between the
output panel, the data panel, and DITL. The output panel shows
the results of users’ consoles. The data panel (Figure 3) allows users
to inspect the value of a single data table, using a design inspired
by existing data table inspectors [34, 46]. As shown in Figure 3A,
users can select saved data tables across different code snapshots.
For each column, the data panel displays a visualization of the
distribution (Figure 3B), summary statistics (Figure 3C), and sample
rows (Figure 3D). Next, we elaborate on DITL and explain how the
diff views are generated.

4.2 Tracking Runtime Variables

The programming prototype we built is able to collect runtime
variable values upon every successful execution. The web-based
interface executes Python code and stores the names and values
of variables that are dataframes. This approach allows us to create
snapshots during each code iteration which are later used to create

Wang et al.

the dataframe diff visualizations. This approach to tracking runtime
variable iterations could be easily generalized to other data science
programming tools like Google Colab [16], DeepNote [8], or Jupyter
Notebooks [22].

4.3 Comparing Changes in Data Frames

In order to visualize the differences between data tables, we must
first identify correspondences between two tables. Our notation
and method for calculating data table correspondences is inspired
by the notation used in the visualization library D3 [6]. In order
to align the two data tables, we use the heuristics of comparing
data frame index provided by the Pandas package [33]. Given an
original (old) data table and a current (new) data table, we use five
labels to describe their correspondences. Both corresponds to a
point that is exactly the same in both the original and current data
table. Updates occur when a point has the same primary key but
some other column value has changed. Update-Enter refers to
the newly updated point in the current data table, while Update-
Exit refers to the old point in the original data table. Lastly, Enter
corresponds to new points while Exit refers to deleted points. The
labels are appended as an additional column in the joint data table.

4.4 Rendering Data Frame Diffs

As shown in Figure 1, we use this correspondence information
to visualize the differences between two data tables. To eliminate
information overload, by default, we only display the columns
that have been changed. Users can click on a toggle button to
display all columns. Through early pilot testing, we decided on
three views for DITL: parallel view, opacity view, and delta view
(Figure 4). The design of these views follows the best practices from
the visualization community for supporting comparisons [14]. We
implemented the interactive visualizations in Vega-Lite.

4.4.1 Parallel View. The parallel view shows the original and cur-
rent distributions of the column side-by-side. We enable the tooltip
to show detailed information about the distribution. While we pur-
posely chose to implement the parallel view in a fashion consistent
with the way these are currently displayed in comparison views
in ReviewNB [37] or VSCode [50], the parallel view can be easily
augmented with the option to display on common axes scales. We
are aware of the potential issues with not unifying the axes and we
included the view to validate these issues.

4.4.2 Opacity View. While the parallel view allows users to directly
inspect and compare distributions of the columns, it is hard to
visually compare the shape of the distributions since they may
come in different scales. Thus, we designed an opacity view which
overlays the distributions on the same axes. This design implements
Gleicher’s guideline [14] that correspondences can be easier to track
when the data is overlaid. We then use the opacity channel to map
the “diff-label” information. Users can move the opacity slider to
cross-fade between the current and original distributions.

4.4.3 Delta View. In our pilot user testing, users demonstrated the
desire to visualize not only the distributions of the current and
original data tables, but also the distributions of their differences.
Thus, we introduce the delta view to explicitly show the subtraction
results. As shown in Figure 4, the delta view contains two parts. The

Diff in the Loop: Supporting Data Comparison in Exploratory Data Analysis CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

il 1 import pandas as pd
Current 2 2 from vega_datasets import data
 ; ®
L. 4 4 df = data.cars()
1k9i87j Edited at 12:18:17 5 5
6 6 df_us = df[df['Origin'] == 'USA']
8851vc Edited at 12:18:04 7 7 df_jpi= dfildfilt0rigint] == *Japan’]
8 8
9+df = df[df['Cylinders'] > 4]
b86swt Edited at 12:01:3 9 10 df.shape
yxzque Edited at 17:50:13
knggax Edited at 17:49:49

Output Dataframe Dataframe Diff @

Current Output Original Output

(195, 9) (406, 9)

Figure 2: We integrate DITL into a simplified data science programming environment that allows data scientists to edit code,
inspect data tables, and compare different data tables. This interface shows that the user is browsing a snapshot tagged 1k9i8;j
where the edit took place at 12:18:17. (A) Users are able to navigate among saved snapshots, compare code differences and
output differences, or switch to the current code editor; (B) Users can edit code in the current code editor which automatically
saves a new snapshot upon successful execution, or view code changes in a snapshot; (C) Users can switch between the output
panel, the data panel panel, and DITL.

Output Dataframe Dataframe Diff

. @ v
Name Miles_per_Gallon Cylinders Displacement Horsepower Weight_in_lbs Accelerat.

5 10 15 20 25 30 35 40 50 55 60 65 70 75 80 100 200 300 180 220 2000 3,000 4,000 5,000 8 10 12

Missir

Figure 3: The data panel allows users to inspect a single data table. (A) Users can select saved data frames from the current
code snapshot; (B) The data panel shows the distribution of each column; (C) The data panel shows the summary statistics for
each column; (D) The data panel shows a sample of rows from the selected data frame.

top view shows either the current or original distribution. On the the increased counts of the data points falling under the bin. We
bottom, the delta shows how the current distribution differs from purposely tweak the scale for the delta distribution to help amplify
the original by computing Ngejrq = Nenter + Nupdate_enter — small changes.

Nexit = Nupdate_exit- Red bars represent negative values of delta,
indicating the decreased counts of the data points falling under the
bin, while green bars represent positive values of delta, indicating

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

current
[/}
°
e
8
@ (2} Al
E 20 -g 80
]
£ g 60
3 o«
8 Ao 90 99 a0 a0 O a0 P %S 40-
Miles_per_Gallon (binned) -
c
3 20+
. . o
original o
0 0-
'g 5 A0 %
(%}
[}
X 50
-
)
E o CurrToOrig
8 5 A0 D O o o0 oo

Miles_per_Gallon (binned)

Parallel View

Miles_per_Gallon (binned) 0

— 05 ~100

Opacity View

Wang et al.

view
80
60

count

20

A0 29 N N «
bin_start, bin_end

100

% N P 0O o P

T 1
A0 ® o0 0 «®

@ current O Original

Delta View

Figure 4: DITL uses three approaches for rendering data differences: parallel view, opacity view, and delta view.

5 USABILITY STUDY

We conducted a 60-minute long virtual usability study with each
of 16 professional data scientists to understand the support that
DITL can provide for common data science programming tasks. In
particular, we sought to answer the following research questions:

e Do data scientists find DITL useful for comparing data ta-
bles?

e How might DITL provide them with additional insights into
the differences between programming iterations?

5.1 Method

5.1.1 Recruitment. We randomly selected 200 data scientists at a
large software company based on their job titles and sent them
recruitment emails. To be eligible for the study, participants had to
self report at least basic experience with Python programming. We
recruited 16 participants altogether (3 females, 12 males, 1 prefer not
to say). Three of our participants had less than 1 year of professional
data science experience, 11 had 1-5 years of professional experience,
and two had more than 5 years of professional experience. Their job
titles included data scientist (9), senior data scientist (4), principal
data scientist (1), research scientist (1), and senior machine learning
scientist (1). We compensated participants with a US$25 Amazon
gift card.

5.1.2 Study Setup. The usability study was conducted remotely
with participants sharing their screens over a video conferencing
tool. Since the DITL study apparatus is a web-based programming
environment, participants were able to use the tool on their com-
puters within their own choice of browsers and configurations.
Each study consists of three sessions — a training session and two
experiment sessions. After a brief walkthrough of the prototype,
we gave participants a trial task to get familiar with the tool. We
presented them with an ongoing code session to explore a dataset
about cars [3]. The trial task is scaffolded into four activities: using
the data panel to inspect a given data frame; using DITL to compare

the differences between two data frames; understanding historical
edits to the code and the data frame; and, modifying the current
code to include an additional step for exploratory data analysis.

After the training session, we gave participants two existing
data science tasks modified from online data science challenges.
One task is about customer satisfaction (noted as T1), which is
modified from Kaggle [23]. The other task is about salary analysis
(noted as T2), which is modified from TidyTuesday projects [48].
We chose these two tasks because they are shared on popular data
science communities [5, 41] and are perceived to be representative
of real-world data science tasks. Since the original challenges are
open-ended and time-consuming, we scaffolded the tasks into three
subtasks: one for cleaning duplicate presentations in data (noted as
S1), one for exploring subsets of the data (noted as S2), and one for
evaluating two model prediction results (noted as S3). To maximize
the time on experiencing DITL, we provided participants hints
and code cheatsheets for the given tasks, and allowed them to ask
API-related questions. We counterbalanced the order of the tasks
between subjects. For each task, participants are randomly assigned
to solve it with or without the DITL. We encouraged participants
to think aloud throughout the tasks.

Lastly, we asked participants to fill out a post-study questionnaire
and reflect on their experience with the tasks. Two members from
the research team observed each study session and took notes. We
recorded the screen sharing of the study sessions and transcribed
the audio recording.

5.2 Results

5.2.1 The need to compare data tables. Our evaluation showed
that comparing data tables is a common activity in various data
science tasks. During the study tasks, we frequently observed par-
ticipants comparing data tables for various purposes. For S1, many
participants inspected and compared the data tables before and
after changes to validate whether the code edits worked as they
expected (14/16). Comparing data tables is also an essential step

Diff in the Loop: Supporting Data Comparison in Exploratory Data Analysis

N/A | Strongly Disagree | |

In my own work, | often feel the need to compare two dataframes. .
The diff inspector helps me better understand the differences between two dataframes.
The diff inspector increases my confidence to do data science work.
| found the diff inspector helpful with debugging code. -
The diff inspector gives me insights about the data.
The diff inspector helps me with the tasks.
The diff inspector would be helpful for sharing data science code and assets with colleagues.
| found the diff visualization easy to follow.

| would use the dataframe diff inspector frequently when it is available in the future.

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

| Agree | Strongly Agree

Figure 5: Participants’ responses to the likert scale questions in the post-task questionnaire.

for generating insights for exploration purposes. For example, for
S2, all participants (16/16) compared the subset of the dataset with
the original dataset in order to understand the side effects of the
filtering query and come up with their next step. Participants also
reported the need to compare data tables to make decisions between
solutions. For S3, all participants (16/16) evaluated the performance
of the models by comparing the model prediction results either
using DITL or writing code for inspections. In the post-task ques-
tionnaire, most participants (14/16) agreed that they often need to
compare two data tables in their own work (Figure 5). For example,
P14 mentioned that their work involved collecting new data during
model deployment: “One thing we do is comparing the original
training data with the scoring snapshots of the weekly changing
data. This is something [comparing data iterations] we should do
but we did not do as often.”

5.2.2 DITL makes comparison easier. We observed several different
strategies for comparing data tables. When DITL was not available,
participants wrote code to manually understand and compare data
tables. For instance, they printed summary statistics, previewed
the first five rows of the data tables, manually created distribution
plots, or formulated customized queries for examining a specific
attribute (e.g., the ratio of female respondents to male respondents).
Most participants used DITL (15/16) when it was available during
the analysis. As shown in Figure 5, participants agreed (15/16) that
DITL helps them with the tasks. They explained why DITL makes
comparison easier.

One advantage of DITL is that besides reducing the amount
of code that participants wrote, it also eliminated code that was
there just for verification or validation purposes. When DITL was
not available, participants wrote code for logging and querying
attributes. This process would produce additional code, reduce the
readability of the analysis, and potentially lead to the rabbit hole of
debugging code that was not part of the primary analysis efforts.
For example, P4 suggested that DITL helped her maintain a cleaned
code space: “This is useful for quick visual inspection across data
frames. I find this helps to avoid intermittent logging and debugging
during the development process.” We counted and compared the
total lines of code that participants produced for completing the
tasks. Unsurprisingly, participants using DITL wrote significantly

fewer lines of code (17.08 lines vs 25.38 lines, p < 0.001 two-sample t-
test). Some participants mentioned that this tool could be helpful for
novice data scientists who are less familiar with relevant APIs (P9)
or for explaining changes to people who are not on the technical
side (P10): “That [DITL] is way easier; The diff is really helpful for
analytical purpose; I think this would help people like me to show
the changes to other people who might not know the technical
side.” (P10)

Next, participants perceived that DITL helps them discover in-
sights about the data (16/16). Participants described the tool “di-
rectly explains what is going on” (P10), “allows me to instantly
look at the differences” (P16), “gives me a big picture” (P7), and “is
helpful for formulating the next steps” (P8). In addition, participants
mentioned that the visualizations helped them understand the side
effect of code edits: “I was not aware of the changes in column
‘Horsepower’ when I applied a filter on the column ‘Cylinders’
until I used the tool.” (P6)

5.2.3 Feedback on the Visualizations. Overall, 13 out of 16 par-
ticipants found the visualizations easy to follow (Figure 5). Two
participants mentioned that their lack of familiarity with interac-
tive visualizations “is getting the way” (P4) and wished to “have
more practice to use the visualizations” (P9). Participants also made
comments on the usefulness of the three different approaches for
visualizing the changes. As expected, there was not a single “best”
view. Rather, the three views are complementary depending on the
task: “Not necessarily every view was useful for different tasks. It
is hard to say which one is the best for all. It kind of depends on
the task. (P6) ”

The parallel view is perceived to be “straightforward” (P1, P6).
One participant described the parallel view as the default approach
they would use when manually comparing two distributions (P6).
This corresponds to our rationale to include the parallel view —
to simulate the go-to approach for comparing the distributions by
plotting them side-by-side. However, other participants critiqued
that this approach “seems not that helpful” (P13) and even “mis-
leading” (P3, P13). They raised concerns that this view was not
intuitive for understanding changes and could be misleading due
to the inconsistent axes and scales (P3, P13).

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Participants had split attitudes towards the opacity view and the
delta view. Five participants (P1, P2, P5, P8, P14) were in favor of
the opacity view most, and described it as “intuitive” and “easy to
understand”, particularly for observing shifts in distributions. For
the delta view, six participants (P4, P7, P9, P13, P15, P16) explicitly
mentioned it being most helpful. They found it particularly useful
upon slicing and selecting subsets (P4), providing the exact differ-
ences in counts in the tooltip (P15). Yet, some participants reported
that it requires more time for them to understand the delta view
than the two other views (P6, P8).

5.2.4 Preferences for integration. Participants’ feedback on future
integration helps us validate the design motivations. Overall, 12 out
of 16 participants responded in a positive manner that they would
frequently use DITL if it were available in the future (Figure 5). For
debugging and understanding the impact of code changes, 12 out of
16 participants were positive on the usefulness of DITL. Participants
explicitly mentioned future usage of “debugging customers’ data
over time” (P5), “validating results of cleaning” (P15), “time travel
debugging” (P2), and “debugging during the dev process” (P4). For
supporting decision making, all participants agreed that DITL gives
them insights about the data. In particular, P3 described how DITL
can be useful to compare A/B experiments: “Looking for distribu-
tional shifts between A/B experiments. Where the distributional
information is hard to summarize into a neat hypothesis test, the
visual chart really helps.” Lastly, 13 out of 16 participants agreed
that DITL would be helpful for sharing data science code and assets
with colleagues.

Participants described how they see DITL working in their own
data science workflows. They mentioned integrating DITL in exist-
ing data science IDEs like PyCharm (P15), Jupyter notebooks (P6,
P14), RStudio (P10, P13), and VS Code (P7, P8, P9) for tracking and
comparing data tables. Some participants mentioned data science
collaboration tools, for example, integrating DITL as part of the git
versioning experience (P1), or augmenting real-time collaborative
editing tools like Google Colab (P16) with DITL.

In addition, participants provided suggestions to further improve
the comparison feature. Participants wanted tailored comparisons
over certain data types. For example, P15 suggested adding visual-
izations to demonstrate text attributes, such as word length, number
of characters or character sets, different topics. Participants also
mentioned the need to compare visual outputs beyond data tables:
“Maybe in the future, users can compare other kinds of graphs than
distribution plots.” (P16)

6 DISCUSSION AND FUTURE WORK

6.1 Towards a Design Space for Visualizing
Data Comparisons

Since the goal of our project is to investigate the idea of data com-
parison in exploratory data analysis, we did not extensively explore
the design space for these visualizations nor did we evaluate these
possible designs. What we learned at this stage suggests empiri-
cal evidence for the utility of using DITL in exploratory analysis.
Participants felt that the effectiveness of the visualizations them-
selves greatly depended on the task at hand and that there was
no single visualization that fits all circumstances. For example, the

Wang et al.

opacity view might be more suitable for observing the trend of shift-
ing in distributions (e.g., correcting skewed distributions through
log-transforms); while the delta view might be more suitable for
showing slicing and filtering to highlight the changes on individual
data bins. In addition, our approach of encoding the diff informa-
tion in additional channels can be extended to create other types
of visualizations, for example, a grouped bar chart rendering the
current and original distributions along the same axes, or a facet
view showing the distribution of data points marked as “new” or
“absent”. Future work can continue to explore this design space and
evaluate the usefulness of the views for various data science tasks.

6.2 Generalizing from Comparing Data Tables
to Comparing Arbitrary Charts

DITL demonstrates the idea of tracking and visualizing changes in
data tables in data science programming environments. We further
argue that the same techniques used for visualizing the differences
in iterative changes of data tables can be generalized to visualizing
changes on a wide variety of charts. Typically, data scientists make
two types of changes on charts: changing the underlying data or
changing the visual representations. If the visual representation
and data schema remain the same while only the underlying data
changes, a similar approach can be used to first combine the origi-
nal and current data tables to encode the diff information for each
data point. This diff information can subsequently be rendered with
an unused channel (e.g., opacity, color, facet, or z-axis) in the visual
representations. Interactions such as sliders, selections, or brushes
can be used to switch between original and current charts. In ad-
dition, we can filter the combined data table and explicitly render
the subtractions. For example, the delta view can be generalized in
charts to represent the visual differences in the visualization. On the
other hand, if the visual representation or the data schema changes
(e.g., table pivoting), there is an opportunity to combine the stateful
interactive visualizations with animations (e.g., SandDance [40],
Datamation [36], Gemini [27]) to explain the transitions. Lastly,
if the changes in charts are multifold, future work can look into
ways to break the changes into the combination of data changes
and visual representation changes.

6.3 Integrating DITL in Data Science
Programming Environments

In this paper, we demonstrate the idea of DITL in a customized
data science programming tool. To integrate DITL in existing data
science programming environments, both scalability and task com-
plexity must be considered. In particular, the timescale for creating
snapshots of the data iterations should be tailored to the context.
For programming IDEs that allow execution of script files (e.g.,
PyCharm), tool designers can leverage built-in debuggers to track
variable values upon each execution and map versions of variable
values to the snapshot of the scripts. For REPL-based programming
environments that allow interactive execution of code snippets
(e.g., Jupyter Notebook), mapping the versions of variable values
with the execution orders and the state of the notebooks can be a
challenging task. Future work can explore how approaches used
in foraging code versions (e.g., Verdant [25], Gather [19]) can be
extended for foraging data iterations. In collaborative data science

Diff in the Loop: Supporting Data Comparison in Exploratory Data Analysis

programming environments, the timescale for creating snapshots
should be tailored towards tracking data iterations and hand-offs
between collaborators. For example, versioning tools like Git or
real-time editing tools like Google Colab can support the diffing of
the data tables and charts when synchronizing collaborators’ edits.
Lastly, the idea of comparing data changes can be helpful in live
programming environments. Live programming is a programming
paradigm recently emerging in data science communities (e.g., Ob-
servable Notebook [32], Glinda [10]). Compared to REPL-based
programming, live programming updates the execution immedi-
ately upon editing [9]. Although live programming is favored for
providing a responsive and consistent experience for exploratory
data analysis, the live experience hides history and may result in
mismatched expectations for the automatic execution [9]. Future
work can explore the idea of showing both code and data iterations
in live programming environments for browsing and resurrecting
histories.

6.4 Limitations

6.4.1 Limitations of DITL. DITL is tailored towards comparing
data tables with changes to the column values without altering the
schema. DITL is able to detect small changes to the schema such
as adding, deleting, and renaming column names, while not able
to handle full schema transformations like data pivoting. Recent
work [36] has used animations to explain operations such as pivot-
ing that might be incorporated into future work. In addition, DITL
only compares two data tables. Future work can explore ways to
make comparisons between multiple data tables.

6.4.2 Limitations of the Evaluation. Our user study has several
limitations. First, in order to control the complexity of the tasks
and the duration of the study, we gave participants data science
tasks modified from online challenges instead of evaluating the tool
with their own tasks. Second, we scaffold the tasks to ensure that
novice data scientists were capable for performing the required
tasks. To further prevent diluting the focus of the study, we pro-
vided immediate, verbal assistance to them when they got stuck on
the programming tasks. We did not evaluate performance in terms
of time as we expected this might be affected by participants’ famil-
iarity with the tool. Most statements in the post-task questionnaire
are positively framed, which could cause a priming effect. Future
work should consider long-term deployment to further examine
the usefulness of the tool in open-ended, real-world data science
tasks.

7 CONCLUSION

This paper presents the idea of Diff In The Loop (DITL), integrating
data differences through visualizations as a first class citizen in
data science programming environments. We illustrate the usage of
comparing data tables in three usage scenarios grounded in prior
literature. We implement a prototype that incorporates DITL and
show how comparing data tables through visualizations can help in
exploratory data analysis. The evaluation of this system confirmed
the needs and benefits of showing both code and data differences
during exploratory data analytic workflows. In particular, DITL
helps data scientists understand the implications of their actions
when manipulating data.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

ACKNOWLEDGMENTS

We thank all of our participants for their help in the study, and the
annonymous reviewers for their valuable feedback.

REFERENCES

[1] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece

Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.

Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP). IEEE, 291-300.

Saleema Amershi, M. Cakmak, W. B. Knox, and T. Kulesza. 2014. Power to the

People: The Role of Humans in Interactive Machine Learning. AI Mag. 35 (2014),

105-120.

[3] Cars 2021. http://lib.stat.cmu.edu/datasets/

[4] Souti Chattopadhyay, Ishita Prasad, Austin Z Henley, Anita Sarma, and Titus
Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1-12.

[5] Ruijia Cheng and Mark Zachry. 2020. Building Community Knowledge In Online
Competitions: Motivation, Practices and Challenges. Proceedings of the ACM on
Human-Computer Interaction 4, CSCW2 (2020), 1-22.

[6] D3.js 2021. https://d3js.org/

[7] Tamraparni Dasu and Theodore Johnson. 2003. Exploratory data mining and data
cleaning. Vol. 479. John Wiley & Sons.

[8] Deepnote 2021. https://deepnote.com/

[9] Robert DeLine and Danyel Fisher. 2015. Supporting exploratory data analysis

with live programming. In 2015 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC). IEEE, 111-119.

Robert A DeLine. 2021. Glinda: Supporting Data Science with Live Programming,

GUIs and a Domain-specific Language. In Proceedings of the 2021 CHI Conference

on Human Factors in Computing Systems. 1-11.

Katarina Furmanova, Samuel Gratzl, Holger Stitz, Thomas Zichner, Miroslava

Jaresova, Alexander Lex, and Marc Streit. 2020. Taggle: Combining overview

and details in tabular data visualizations. Information Visualization 19, 2 (2020),

114-136.

GitHub 2021. https://github.com/

Michael Gleicher. 2017. Considerations for visualizing comparison. IEEE transac-

tions on visualization and computer graphics 24, 1 (2017), 413-423.

[14] Michael Gleicher, Danielle Albers, Rick Walker, L. Jusufi, C. Hansen, and

Jonathan C. Roberts. 2011. Visual comparison for information visualization.

Information Visualization 10 (2011), 289 - 309.

Michael Gleicher, Aditya Barve, Xinyi Yu, and Florian Heimerl. 2020. Boxer:

Interactive comparison of classifier results. In Computer Graphics Forum, Vol. 39.

Wiley Online Library, 181-193.

[16] Google Colab 2021. https://colab.research.google.com

[17] Julien Gori, Han L Han, and Michel Beaudouin-Lafon. 2020. FileWeaver: Flexible
File Management with Automatic Dependency Tracking. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology. 22-34.

[18] Philip Jia Guo. 2012. Software tools to facilitate research programming. Stanford
University.

[19] Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.
2019. Managing messes in computational notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1-12.

[20] Charles Hill, Rachel Bellamy, Thomas Erickson, and Margaret Burnett. 2016.
Trials and tribulations of developers of intelligent systems: A field study. In 2016
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
162-170. https://doi.org/10.1109/VLHCC.2016.7739680

[21] Fred Hohman, Kanit Wongsuphasawat, Mary Beth Kery, and Kayur Patel. 2020.
Understanding and visualizing data iteration in machine learning. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems. 1-13.

[22] Jupyter 2021. https://jupyter.org

[23] Kaggle Starbucks Satisfactory Survey 2021. https://www.kaggle.com/
mahirahmzh/starbucks- customer-retention-malaysia-survey?select=
Starbucks+satisfactory+survey.csv

[24] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting Ex-

ploratory Programming by Data Scientists. Association for Computing Machinery,

New York, NY, USA, 1265-1276. https://doi.org/10.1145/3025453.3025626

Mary Beth Kery, Bonnie E John, Patrick O’Flaherty, Amber Horvath, and Brad A

Myers. 2019. Towards effective foraging by data scientists to find past analysis

choices. In Proceedings of the 2019 CHI Conference on Human Factors in Computing

Systems. 1-13.

Mary Beth Kery and Brad A Myers. 2017. Exploring exploratory programming.

In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC). IEEE, 25-29.

—_
2,

=
=

—_
jon

==
L

=
&

[25

[26

http://lib.stat.cmu.edu/datasets/
https://d3js.org/
https://deepnote.com/
https://github.com/
https://colab.research.google.com
https://doi.org/10.1109/VLHCC.2016.7739680
https://jupyter.org
https://www.kaggle.com/mahirahmzh/starbucks-customer-retention-malaysia-survey?select=Starbucks+satisfactory+survey.csv
https://www.kaggle.com/mahirahmzh/starbucks-customer-retention-malaysia-survey?select=Starbucks+satisfactory+survey.csv
https://www.kaggle.com/mahirahmzh/starbucks-customer-retention-malaysia-survey?select=Starbucks+satisfactory+survey.csv
https://doi.org/10.1145/3025453.3025626

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

[27]

[28]

[29

[30]

[31

[32

[33
[34]
[35]

[36

[37]

[39]

[40]
[41]

[42]

[43

[44]

[45

[53]

[54]

Younghoon Kim and Jeffrey Heer. 2020. Gemini: A grammar and recommender
system for animated transitions in statistical graphics. IEEE Transactions on
Visualization and Computer Graphics 27, 2 (2020), 485-494.

Sam Lau, Ian Drosos, Julia M Markel, and Philip J Guo. 2020. The Design Space of
Computational Notebooks: An Analysis of 60 Systems in Academia and Industry.
In 2020 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 1-11.

Po-Ming Law, Rahul C Basole, and Yanhong Wu. 2018. Duet: Helping data
analysis novices conduct pairwise comparisons by minimal specification. IEEE
transactions on visualization and computer graphics 25, 1 (2018), 427-437.
Po-Ming Law, Subhajit Das, and Rahul C Basole. 2019. Comparing apples and
oranges: Taxonomy and design of pairwise comparisons within tabular data. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1-12.

Christina Niederer, Holger Stitz, Reem Hourieh, Florian Grassinger, Wolfgang
Aigner, and Marc Streit. 2017. TACO: visualizing changes in tables over time.
IEEE transactions on visualization and computer graphics 24, 1 (2017), 677-686.
Observable 2021. Observable: the magic notebook for exploring data and thinking
with code. https://observablehq.com/

pandas - Python Data Analysis Library 2021. https://pandas.pydata.org
PandasGUI 2021. https://github.com/adamerose/PandasGUI

Jeffrey M Perkel. 2018. Why Jupyter is data scientists’ computational notebook
of choice. Nature 563, 7732 (2018), 145-147.

Xiaoying Pu, Sean Kross, Jake M Hofman, and Daniel G Goldstein. 2021. Data-
mations: Animated Explanations of Data Analysis Pipelines. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1-14.

ReviewNB 2021. https://www.reviewnb.com/

El Kindi Rezig, Ashrita Brahmaroutu, Nesime Tatbul, Mourad Ouzzani, Nan
Tang, Timothy Mattson, Samuel Madden, and Michael Stonebraker. 2020. De-
bugging large-scale data science pipelines using dagger. Proceedings of the VLDB
Endowment 13, 12 (2020), 2993-2996.

Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and expla-
nation in computational notebooks. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 1-12.

SandDance 2021. https://microsoft.github.io/SandDance/

Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Remote, but Connected:
How# TidyTuesday Provides an Online Community of Practice for Data Scientists.
Proceedings of the ACM on Human-Computer Interaction 5, CSCW1 (2021), 1-31.
Arjun Srinivasan, M. Brehmer, Bongshin Lee, and S. Drucker. 2018. What’s
the Difference?: Evaluating Variations of Multi-Series Bar Charts for Visual
Comparison Tasks. Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (2018).

Chris Stolte, Diane Tang, and Pat Hanrahan. 2008. Polaris: A System for Query,
Analysis, and Visualization of Multidimensional Databases. Commun. ACM 51,
11 (Nov. 2008), 75-84. https://doi.org/10.1145/1400214.1400234

Guo-Dao Sun, Ying-Cai Wu, Rong-Hua Liang, and Shi-Xia Liu. 2013. A survey of
visual analytics techniques and applications: State-of-the-art research and future
challenges. Journal of Computer Science and Technology 28, 5 (2013), 852-867.
Charles Sutton, Timothy Hobson, James Geddes, and Rich Caruana. 2018. Data
Diff: Interpretable, Executable Summaries of Changes in Distributions for Data
Wrangling. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (London, United Kingdom) (KDD ’18).
Association for Computing Machinery, New York, NY, USA, 2279-2288. https:
//doi.org/10.1145/3219819.3220057

Sweetviz 2021. https://pypi.org/project/sweetviz/

John R Thompson, Zhicheng Liu, and John Stasko. 2021. Data animator: Author-
ing expressive animated data graphics. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. 1-18.

TidyTuesday - Weekly Challenge 2021. https://github.com/rfordatascience/
tidytuesday/blob/master/data/2021/2021-05-18/readme.md

John W Tukey et al. 1977. Exploratory data analysis. Vol. 2. Reading, Mass.

VS Code 2021. https://code.visualstudio.com/

April Yi Wang, Anant Mittal, Christopher Brooks, and Steve Oney. 2019. How data
scientists use computational notebooks for real-time collaboration. Proceedings
of the ACM on Human-Computer Interaction 3, CSCW (2019), 1-30.

April Yi Wang, Zihan Wu, Christopher Brooks, and Steve Oney. 2020. Callisto:
Capturing the" Why" by Connecting Conversations with Computational Narra-
tives. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1-13.

Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. 2015. Voyager: Exploratory analysis via faceted browsing
of visualization recommendations. IEEE transactions on visualization and computer
graphics 22, 1 (2015), 649-658.

Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk, A.
Anand, J. Mackinlay, Bill Howe, and J. Heer. 2017. Voyager 2: Augmenting Visual
Analysis with Partial View Specifications. Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (2017).

[55]

[56]

Wang et al.

Yifan Wu, Joseph M Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
code and interactive visualization in computational notebooks. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
152-165.

Amy X Zhang, Michael Muller, and Dakuo Wang. 2020. How do data science
workers collaborate? roles, workflows, and tools. Proceedings of the ACM on
Human-Computer Interaction 4, CSCW1 (2020), 1-23.

https://observablehq.com/
https://pandas.pydata.org
https://github.com/adamerose/PandasGUI
https://www.reviewnb.com/
https://microsoft.github.io/SandDance/
https://doi.org/10.1145/1400214.1400234
https://doi.org/10.1145/3219819.3220057
https://doi.org/10.1145/3219819.3220057
https://pypi.org/project/sweetviz/
https://github.com/rfordatascience/tidytuesday/blob/master/data/2021/2021-05-18/readme.md
https://github.com/rfordatascience/tidytuesday/blob/master/data/2021/2021-05-18/readme.md
https://code.visualstudio.com/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Supporting Exploratory Programming
	2.2 Making Sense of the Changes

	3 Design Motivations
	3.1 Understanding the Impact of Code Changes in Debugging
	3.2 Gaining Insights in Data Through Comparisons
	3.3 Improving Awareness in Collaboration

	4 System Design
	4.1 Overview of DITL Study Apparatus
	4.2 Tracking Runtime Variables
	4.3 Comparing Changes in Data Frames
	4.4 Rendering Data Frame Diffs

	5 Usability Study
	5.1 Method
	5.2 Results

	6 Discussion and Future Work
	6.1 Towards a Design Space for Visualizing Data Comparisons
	6.2 Generalizing from Comparing Data Tables to Comparing Arbitrary Charts
	6.3 Integrating DITL in Data Science Programming Environments
	6.4 Limitations

	7 Conclusion
	Acknowledgments
	References

