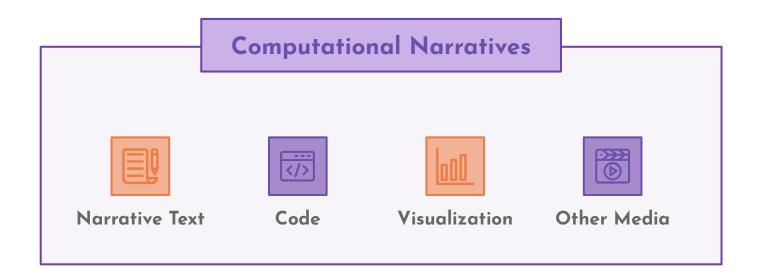
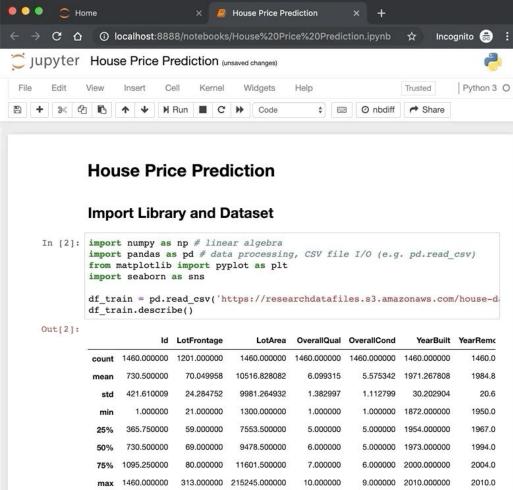

How Data Scientists Use Computational Notebooks for Real-Time Collaboration


April Yi Wang | Anant Mittal | Chris Brooks | Steve Oney University of Michigan



The Story Behind Data Analysis

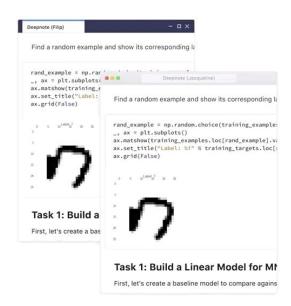
The Story Behind Data Analysis

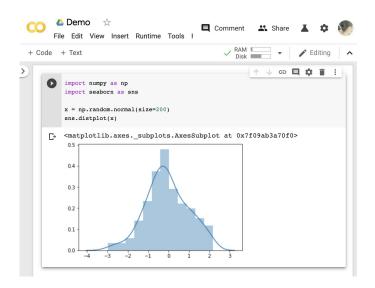
Jupyter Notebook

Jupyter notebooks consist of "cells" — typically small chunks of code or narrative text in the Markdown format.

Users can execute cells (typically, but not necessarily, from top to bottom) and observe their outputs.

Histogram for SalePrice


Writing and Sharing Computational Notebooks in Various Contexts


- Data Science Education
 Kross and Guo, CHI 19
- Open Science
 Randles et al., JCDL 17
- Professional Data Analytics
 Kery et al., CHI 18

. . . .

From Sharing to Synchronous Editing

Deepnote

Google colab

. . . .

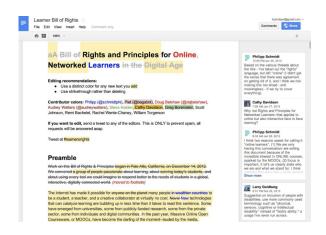
. . . .

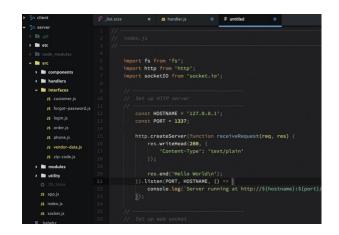
. . . .

. . . .

Issues with Synchronous Editing

- Reluctant to write together when collaboratively constructing a document
- Social embarrassment to be watched by others when typing


Ab Review g Reflection **Kecompile** rs (e.g., the o change the EECS 498 Reading Reflection 2 h school ystem in China Redesigning Glitch for Asiar ng computer The Glitch program is explicitly designed for motive to learn programming. African-American teen males a nagers to succeed in a formal setting and often shy away from pr to others. However, it is almost the opposite side in n help them society, and students themselves acknowledge the grez design of teenagers are highly motivated to succeed in a formal sc In this paper, I will explain why Asian teenagers


~ Wang et al. CSCW'17

. . . .

. . . .

Issues with Synchronous Editing

Collaborative Writing

Wang et al. CSCW'17 D'Angelo et al. CSCW'18

Collaborative Programming

Goldman et al. UIST'11 Oney et al. CSCW'18

What about collaborative data science?

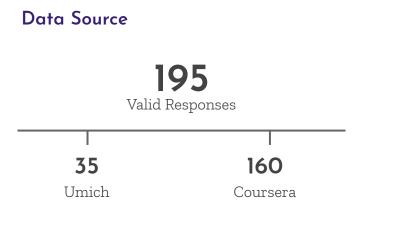
data science ≠ writing + coding

RQ1 What tools and strategies do data scientists currently use for collaboration?

RQ2 Compared to working on individual notebooks in a collaborative setting, how does synchronous notebook editing change the way data scientists collaborate in computational notebooks?

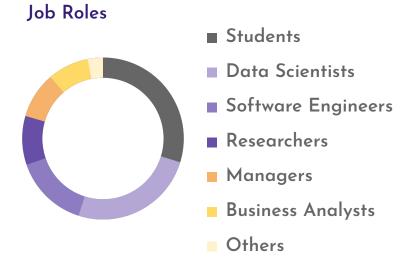
RQ3 What challenges, if any, do data scientists perceive in synchronous notebook editing?

Study 1 Formative Survey


RQ1 What tools and strategies do data scientists currently use for collaboration?

RQ2 Compared to working on individual notebooks in a collaborative setting, how does synchronous notebook editing change the way data scientists collaborate in computational notebooks?

RQ3 What challenges, if any, do data scientists perceive in synchronous notebook editing?


Study 2 Observational Study

Demographic

Choices of Tools

Programming	Jupyter Notebooks (88.72%), IDEs (51.79%), Google Colab (12.31%)	
Communication	Emails (79.49%), Face-to-face Communication (68.72%)	
Project Management	Version Control Tools (49.74%), Task Tracking Tools (21.03%)	

Strategies for Keeping a Shared Understanding

Discussions and Meetings	Weekly meeting among team members;	
Frequently Check-in	Communicate actively and frequently;	
Documentation	Keep notes in Google Docs; comments in code;	
Organization	Divide up the work into definable parts;	
Shared Assets	Common repository for files;	
Others	Code review to ensure code matched intent	

Study 1 Formative Survey

RQ1 What tools and strategies do data scientists currently use for collaboration?

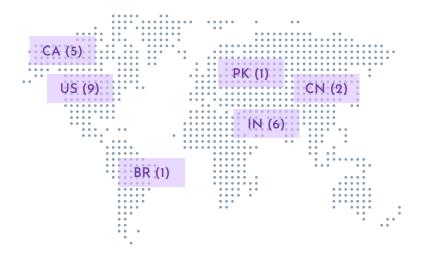
Traditional Collaboration Setting

Working on individual Jupyter notebooks

Emerging Collaboration Setting

Working on notebooks with synchronous editing

Study 1 Formative Survey


RQ2 Compared to working on individual notebooks in a collaborative setting, how does synchronous notebook editing change the way data scientists collaborate in computational notebooks?

RQ3 What challenges, if any, do data scientists perceive in synchronous notebook editing?

Study 2 Observational Study

Participants

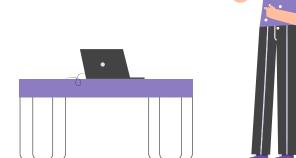
- 24 participants (12 from the survey)
- Randomly assigned to pairs
- Work collaboratively on a predictive modeling problem remotely

Study Setup

Non-Shared Condition

Participants worked on individual notebooks

- Exchange the notebook file
- ✓ Set up a git repository
- Send code snippets through other tools
 if necessary


Shared Condition

Synchronous editing was supported.

- ✓ Share notebook edits and actions (e.g., moving cursor, adding cells) in real-time
- Execute code on a single interpreter
- Update output and runtime variables
 among collaborators

Task

- Predict house sale prices using 80 features (e.g., lot size, year built)
- Additional incentives for the group with the lowest error score
- Submit prediction results as well as one Jupyter notebook report
- Choose from text-messaging (Slack) or video-conferencing (Google Hangouts) for communication

Advanced Model Session 4

Study 2 Observational Study

Procedure

The study consisted of four sessions, each of which lasted an hour.

Collaboration Style	GID	Definition
Single Authoring		One team member contributed the majority of ideas and did the majority of the implementation, while the others did not contribute much.
Pair Authoring		
Divide and Conquer		
Competitive Authoring		

Collaboration Style	GID	Definition
Single Authoring		One team member contributed the majority of ideas and did the majority of the implementation, while the others did not contribute much.
Pair Authoring		One team member did the majority of implementation while the others contributed ideas, engaged in discussions and reviewed the results.
Divide and Conquer		
Competitive Authoring		

Collaboration Style	GID	Definition	
Single Authoring		One team member contributed the majority of ideas and did the majority of the implementation, while the others did not contribute much.	
Pair Authoring		One team member did the majority of implementation while the others contributed ideas, engaged in discussions and reviewed the results.	
Divide and Conquer		Members divided the task into subgoals and explored the subgoals independently.	
Competitive Authoring			

Collaboration Style	GID	Definition	
Single Authoring		One team member contributed the majority of ideas and did the majority of the implementation, while the others did not contribute much.	
Pair Authoring		One team member did the majority of implementation while the others contributed ideas, engaged in discussions and reviewed the results.	
Divide and Conquer		Members divided the task into subgoals and explored the subgoals independently.	
Competitive Authoring		Team members wrote the code for the same purpose and reached the consensus to use the code by whomever finished first.	

Collaboration Style	GID	Definition	
Single Authoring	S2, S5	One team member contributed the majority of ideas and did the majority of the implementation, while the others did not contribute much.	
Pair Authoring	S6	One team member did the majority of implementation while the others contributed ideas, engaged in discussions and reviewed the results.	
Divide and Conquer	N2, N5, S1, S3, S4	Members divided the task into subgoals and explored the subgoals independently.	
Competitive Authoring	N1, N3, N4, N6	Team members wrote the code for the same purpose and reached the consensus to use the code by whomever finished first.	

Communication Channels

	Non-Shared Condition	Shared Condition
Choices of Tools	Text Messaging (6/6)	Text Messaging (3/6) Video Conferencing (3/6)

Participants in the non-shared condition send files, code snippets, and output more often.

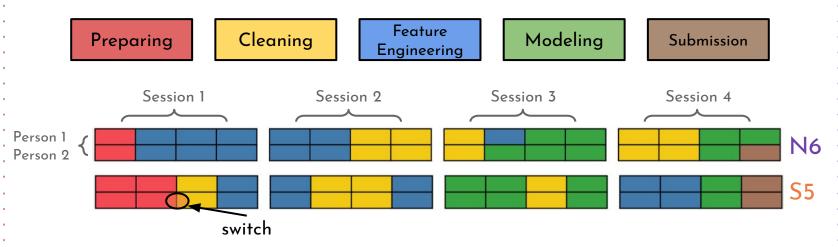
→ Working in the shared notebook may reduce the communication costs by establishing a shared context.

Final Submissions

- → Groups in the shared condition achieved a better prediction result.
 - Non-Shared Condition
 - Shared Condition

Error Score

→ Groups in the shared condition explored more alternative models.


Number of Alternative Models*

Lines in the Notebook*

Work Across Phases

Participants in the shared condition switched more frequently (p<0.001).

→ Working on the same notebook provides collaborators with convenience to branch through tasks

Work Across Phases

Session 1 Session 2 Session 3 Session 4 Session 2 Session 3 Session 4 Session 1 Session 2 Session 3 Session 4 Session 2 Session 3 Session 4 Session 4 Session 5 Session 6 Session 6 Session 7 Session 8 Session 8 Session 8 Session 9 Sessio

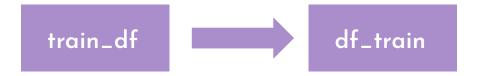
Participants in the shared condition switched more frequently (p<0.001).

→ Working on the same notebook provides collaborators with convenience to branch through tasks

Benefits of Synchronous Editing in Notebook

- → Reducing communication costs
- → Flexibility to branch through tasks
- → Enabling explorations of more alternative models
- → Leading to a better prediction result

31

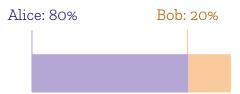

Study 2 Observational Study

Challenges of Synchronous Editing

Challenges of Synchronous Editing

1. Interference with each other

"... When using Jupyter Notebook together, it's hard to keep track of variable names. Everyone might use a different name and may cause issues. For example, my teammate used train_df as name, and later changed it to something else, but I wanted him to keep using the original name..." (P2 from S1)


Challenges of Synchronous Editing

2. Lack of Strategic Coordination

Why competitive authoring happens in the non-shared condition?

Alice: 80% Bob: 60%

Why single authoring happens in the shared condition?

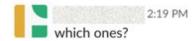
"... I feel I am not splitting work well enough. **I was thinking about how to get the work done and**just tried the ideas on myself..." (P11 from S2)

Challenges of Synchronous Editing

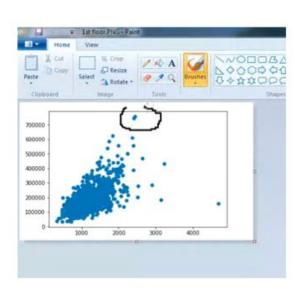
S₃ wrote down subtasks in the notebook.

Pre-processing and cleaning

Steps


- 1. Replace discrete values with indices
- 2. Remove data samples with too many missing features
- 3. Normalize continuous variables
- 4. Compute correlation, or use other techniques to select features

Challenges of Synchronous Editing

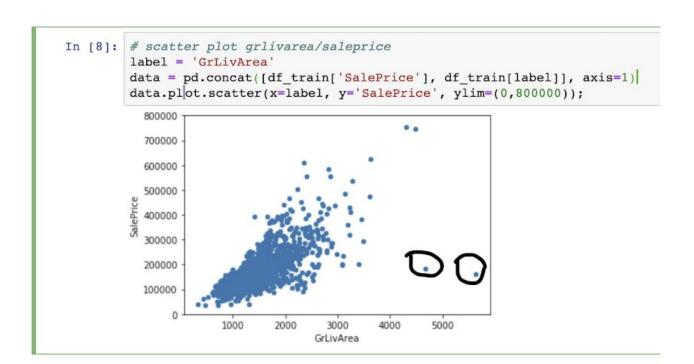

3. Contextual Chatting

P14 and P15 were looking at the scatterplots of independent variables together.

2:18 PM
In my opinion there are outliers in all of our features there are 1 or 2 points that outlies

P14 downloaded the graph, opened MS Paint, annotated the graph and sent it back to P15.

Challenges of Synchronous Editing


- 1. Interference with each other
- 2. Lack of Strategic Coordination
- 3. Contextual Chatting
- 4. Lack of Awareness
- 5. Problems with the Linear Structure
- 6. Privacy Concerns

- → Working on the same notebook results in different collaboration styles compared to working on individual notebooks.
- → Synchronous editing tools improve collaboration by helping data scientists maintain a shared context and improve work efficiency.
- → However, the current real-time collaborative editing features may lead to several problems (e.g., interference with each others' work, unbalanced contributions).

Extending Our Understanding of Collaborative Editing Across Contexts

- Collaborators may hold different programming backgrounds and domain knowledge
- Different roles in collaborative data science

Example: How to deal with the two dots?

40

Design Implications

- Improve Awareness of Collaborators' Activity
- Provide Access Control
- Enable Discussions within Notebooks

Limitations

- Generalizability
 - the type of data science problems
 - the expertise of collaborators
 - the size of the team
 - the synchronicity of the collaboration

How Data Scientists Use Computational **Notebooks for Real-Time Collaboration**

What tools and strategies do data scientists currently use for collaboration? Study 1 - Formative Survey on Collaborative Data Science Traditional Collaboration Setting + Emerging Collaboration Setting

How does synchronous notebook editing change the way data scientists collaborate? What challenges do data scientists perceive in synchronous notebook editing? Study 2 - Observational Study on Collaborative Data Science Having synchronous editing is great for collaborative data science, but not perfect!

Presenter: April Yi Wang | aprilww@umich.edu

Co-authors: Anant Mittal, Chris Brooks, Steve Oney

