
Strategies for Reuse and Sharing among Data Scientists in
Software Teams

Will Epperson
willepp@cmu.edu

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

April Yi Wang
aprilww@umich.edu

The University of Michigan

Ann Arbor, Michigan, USA

Robert DeLine
rdeline@microsoft.com

Microsoft Research

Redmond, Washington, USA

Steven M. Drucker
sdrucker@microsoft.com

Microsoft Research

Redmond, Washington, USA

ABSTRACT

E ective sharing and reuse practices have long been hallmarks
of proficient software engineering. Yet the exploratory nature of
data science presents new challenges and opportunities to support
sharing and reuse of analysis code. To better understand current
practices, we conducted interviews (N=17) and a survey (N=132)
with data scientists at Microsoft, and extract five commonly used
strategies for sharing and reuse of past work: personal analysis
reuse, personal utility libraries, team shared analysis code, team
shared template notebooks, and team shared libraries. We also
identify factors that encourage or discourage data scientists from
sharing and reusing. Our participants described obstacles to reuse
and sharing including a lack of incentives to create shared code,
difficulties in making data science code modular, and a lack of tool
interoperability. We discuss how future tools might help meet these
needs.

KEYWORDS

Data Science, Code Reuse, Code Sharing, Survey
ACM Reference Format:
Will Epperson, April Yi Wang, Robert DeLine, and Steven M. Drucker.
2022. Strategies for Reuse and Sharing among Data Scientists in Software
Teams. In 44nd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP ’22), May 21–29, 2022, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3510457.3513042

1 INTRODUCTION

As software engineering developed into a mature discipline, the
ability to e ectively share and reuse code has become a critical
factor for success [9, 11, 16, 17]. Particularly as organizations grow,
information management becomes both more difficult and more
important. This information takes the form of actual source code
but also the documentation for this code, specifications around the
problem the code was initially created to solve, and who to talk
to in an organization to learn more about the code. Well executed

This work is licensed under a Creative Commons Attribution International 4.0
License.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9226-6/22/05.
https://doi.org/10.1145/3510457.3513042

software reuse leads to fewer problems in code, less effort spent

correcting problems, and higher developer productivity [21]. Tech-

nologies such as version control [10] have become commonplace to

help keep track of versions between files and principles like “DRY”

(Don’t Repeat Yourself) are baked into software developers’ minds.

However, the field of data science presents new and unique

challenges in terms of sharing and reuse. The people writing the

code come from different backgrounds, the code itself lives in a

variety of formats including raw text files, computational notebooks,

and ad hoc queries, and data permeates the entire analysis process.

Data scientists are a relatively recent role on software develop-

ment teams, and they work alongside established roles like software

developers, operations, and program managers [4, 14, 15, 18, 19]. In

the industrial setting, data scientists are often not directly respon-

sible for the data they analyze. Their partners, the data engineers,

collect, store, and maintain datasets that data scientists access for

their analysis [14, 15]. For teams whose services use machine learn-

ing (ML), data engineers also deploy, scale out, and maintain ML

models that data scientists create [2]. Further, some data scientists

work on their own team’s data, some act as a centralized service

working with several product teams, and some act as consultants

working with third-party companies.

A data scientist’s work is often exploratory or ad hoc in nature

and involves using data to craft analyses, models, and visualiza-

tions that are reported outside of the coding environment [15]. At

Microsoft, each data science team is free to go about this process

however they see fit which leads to a wide variety of approaches.

To scale model and inference pipelines into production, this process

is handed off to adjacent data engineers.

This unique role for data scientists has led to new approaches and

problems for code reuse and sharing. The exploratory, open-ended

nature of data science coding impacts the incentives for investing

time into reuse. For instance, if code is only used to answer a one-

off analysis question, there is less incentive to invest the time into

making this a reusable function. Furthermore, reusable code for

data analysis must support customization and adaptation since each

data analysis is slightly unique.

In this work, we specifically focus on the reuse of analysis code as

it relates to data science work. This code is almost always coupled

with data assets for the analysis, however we consider the version-

ing and reuse of data itself outside the scope of our study. Decisions

about the team’s data management are often made at the team level

243

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

http://creativecommons.org/licenses/by/4.0/

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Epperson et al.

and are subject to corporate policies, customer agreements, laws

and regulations. Data scientists typically enjoy more agency over

the data analysis code than over the data itself. Hence, we focus on

their work practices and pain points around the data analysis code

as a topic where the research community can usefully intervene.

Additionally, we focus on the reuse of code developed within teams

or organizations rather than external library use.

By “reuse” we refer specifically to the consumption of code or

other artifacts from previous work. This might be the author of

that work reusing their own past analysis or that of someone else.

On the other hand, by “sharing” we refer to the production of code

or other artifacts for oneself and then providing it to someone else

for another task. The acts of sharing and reuse might be viewed as

two sides of the same coin; unique practices exist for both facets.

To provide a better understanding of how data scientists go about

both reusing and sharing past work, we conducted interviews with

professional data scientists to understand their current practices

related to sharing and reuse of analysis. From these interviews

we synthesized five different strategies for sharing and reuse that

we developed into a survey to understand how these approaches

generalize across a larger population. In the remainder of this paper,

we first present related work regarding sharing and reuse in data

science, followed by a discussion of our study methodology. We

then discuss the strategies for reuse and sharing generated from

our interviews and survey, along with determinants of reuse that

encourage or discourage sharing and reuse among data scientists.

Lastly, we discuss opportunities for future work to address un-

met needs for sharing and reuse in the practice of data science. In

summary, our contributions are:

(1) Based on an interview study and survey with 149 profes-

sional data scientists, we characterize five primary strategies

for sharing and reuse of analysis code.

(2) We report our participants’ determinants and obstacles for

sharing and reuse practices and discuss implications for fu-

ture tools.

2 BACKGROUND AND RELATEDWORK

There are primarily two relevant areas of interest to this work.

The first explores the practices of sharing and reuse in traditional

software engineering. The second investigates common themes

among exploratory data programming.

Reusing and Sharing in Software Engineering. Reusing and

sharing code benefits software developers by saving their time and

resources to build and maintain applications, while maintaining

code simplicity [9, 11, 16, 17]. Effective reuse relies on concise and

expressive abstractions [17]. Using various form of abstractions,

common strategies for software reuse include high-level languages,

ad hoc code scavenging, and source code components such as li-

braries [17]. In particular, with the growth of open source software,

library reuse has become a prevalent practice in software engi-

neering [1, 12, 23]. Library repositories like NPM and PyPI have

facilitated the sharing, discovering, and management of third-party

libraries, which lead to the increasing usage of third-party libraries

among software developers [1, 23]. This huge demand further in-

centivizes the creation and implementation of third-party libraries.

However, library reuse has its limitations. Xu et al. found that

developers would replace an external library with their own im-

plementation if the library is over complicated or not flexible to

satisfy their needs [26]. In data science, code is less formal compared

to traditional software engineering [18]. Although data scientists

generally benefit from libraries for performing common data oper-

ations and computations, these libraries tend to be low level. The

practice of sharing and reusing entire analyses or workflows in

data science remains unexplored and worth investigating. Thus, our

work aims to reveal the reuse and sharing practice in data science

programming, understand the different reuse decisions between tra-

ditional software engineering and data science, and identify design

opportunities for facilitating reuse to improve work efficiency.

The Process of Data Science. Several researchers have inves-

tigated what steps data scientists go through in their work and

how they seek to coordinate their efforts. Machine learning product

development involves iterations of a process that begins with gath-

ering model requirements and ends with model deployment and

monitoring [2]. Throughout this process, data scientists, domain

experts, team leaders and software engineers collaborate in unique

roles as indicated by tool use (technical vs non-technical users) [27].

In this process, Jupyter notebook users tend to think less about

future use of their code even though notebooks are touted as a

more readable platform [27].

Several large scale reviews of computational notebooks have

documented that despite the benefits of computational notebooks,

they can encourage bad coding practices because of unexpected

execution order and a lack of modular code [22, 24]. For example,

Rule et al discovered that nearly half of the 1 million Jupyter note-

books they scraped from Github were uploaded with non-linear

execution orders [24]. These notebooks serve a variety of purposes

like data exploration, places to store code, or for ad hoc versioning

of analyses. However, analysts must invest time and effort to clean

up their notebook to make it reproducible or reusable by others.

Our investigation is distinct in that we take a broader look at how

data scientists specifically reuse and share their work across all

platforms.

Tools forData ScienceWorkflowManagement. Several plat-

forms have been developed to help data scientists share code while

programming. Git is a widely used version control system that

lets users manage version of raw files for software projects [10].

However git does not work well for comparing versions of rich text

files like computational notebooks. Systems like Verdant augment

notebooks to better support versioning by tracking a user’s analysis

history [13]. Our work discusses unmet needs for sharing and reuse

in data science that future tools might address.

3 METHODS

To better understand the state of the art in sharing and reuse prac-

tices in data science today, we conduced semi-structured interviews

with 17 data scientists at Microsoft. To ensure the generality of our

findings, we then developed a survey that was completed by an

additional 132 data scientists. Both studies were approved by an

Internal Review Board, and all participants signed consent forms.

Interview participants were each compensated with $25 USD gift

card. Survey participants were entered into a raffle for three $100

USD gift cards.

244

Strategies for Reuse and Sharing among Data Scientists in Software Teams ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

3.1 Interview Study

For our interviews we recruited 17 participants from a pool of data

scientists chosen at random from the employee database, based

on their job titles, levels, and business units. In particular, we re-

cruited data scientists from software product or service teams and

excluded those from non-product units like Research and Legal.

We conducted the interviews in one-hour sessions where we asked

about the participants’ sharing and reuse practices as an individual

and as a member of their team. These interviews were transcribed

and then analyzed for themes. Specifically, two of the authors re-

read the transcripts, coded them, and card sorted the codes to come

up with themes. The authors then discussed the themes until a

consensus was reached. The interviews revealed both common

strategies for reuse that are discussed more in depth in Section 6 as

well as factors that encourage and discourage reuse discussed in

Section 7. Throughout this paper, interview participants are called

informants, and their quotes are designated with “IP”.

3.2 Survey

To assess the generalizability of our identified themes, we ran a

survey with data scientists drawn at random from the same pool as

the interviews. In total, 132 participants filled out our survey, out of

563 invited (23% response rate). The survey asked for the following

information:

• Background about the respondent’s years of experience, tool

usage, and team size;

• For each of the five strategies:

– Frequency of reuse;

– How the reuse happens (e.g. copy-paste, function call, etc.);

– What functionality is reused;

– How reused work is found;

– Frequency of sharing;

– Additional work required for sharing

• Influences on their willingness to do reuse and sharing

• Best practices and pain points for reuse and sharing

The survey took 10–15 minutes to complete. Throughout this pa-

per, survey participants are called respondents, and their quotes

designated with “SP”.

4 PARTICIPANT BACKGROUNDS

Our informants (9 male, 8 female) had experience ranging from

2–14 years of professional data analysis work. All informants were

from different teams. They had a range of educational backgrounds,

including fields like statistics, math, or computer science. Our re-

spondents (85 male, 46 female, 1 did not say) reported a range of

professional experience in data science from 3 months to 35 years,

with a mean of 8.6 years.

Context. Our study is conducted at Microsoft, a large software

corporation. At Microsoft, data scientists work both on dedicated

teams and also within software engineering teams. There exists

little standardization across teams mandating how data scientists

must go about their work. This leads to a wide variety of tool usage

and reuse strategies.

Team Composition. The informants are either members of

dedicated data science teams, situated within larger product teams

or work on product teams alongside software engineers. The survey

respondents report team sizes ranging from 1–22 people, with a

mean of 8 people (after removing outlier responses). However even

on teams with many data scientists, most projects involve only one

or two of them: 74% of respondents work either alone or in pairs on

projects. Analysts communicate with team members throughout

their project to communicate results, seek help, and to find code

for reuse (see Section 6 for details), however most projects only

involve one or two data scientists actually touching the code or

data. This is starkly different from large software projects within

Microsoft that may have dozens of developers iterating on a single,

interdependent, code base.

As noted in prior literature, much of the work done by data

scientists is exploratory in nature and their coding practices reflect

this. Data scientists will often begin an analysis, but if it turns into

something recurring or the model they built must be scaled up for

production deployment, the code will be handed over to an adjacent

software engineering team. Several of our informants expressed

admiration for the high quality code produced on production teams

and claimed it was far superior to their own in terms of organization,

commenting, and style. One of our interview participants (IP6)

noted that the software engineers they work with “write pretty

fabulous code in terms of readability and actual usability”.

Tools shape sharing and reuse. The interview participants

use a variety of tools to do their work. The most popular languages

used were Python, R, a query language for large-scale relational

queries (Cosmos/SCOPE), and a query language for large-scale

telemetry data (Kusto Query Language/KQL [20]). Analysis was

done in a combination of computational notebooks (Jupyter, Visual

Studio Code Notebooks, and Databricks) and integrated develop-

ment environments. However, even data scientists on the same

team rarely used the exact same tool stack. The tool chosen to write

code is often shaped by how and where the data is stored, which in

turn shapes the sharing practices afforded by the tool.

For example, several teams used Databricks for writing their

analyses [7]. Databricks allows code to be written in a variety of

languages including Python and R in a computational notebook in-

terface. Teams using these tools developed reuse strategies around

notebooks such as template notebooks and notebook libraries (Sec-

tion 6.4). Yet other teams that do most of their analysis using KQL

developed strategies to share their work through the tool where

they write their queries.

Lastly, many participants noted that the final output of their work

is often not the code itself. This in turn shapes both the practice of

reuse, as well as the incentives to invest in creating reusable code.

Results are presented as PowerPoint presentations, text documents,

or dashboards. This finding is consistent with prior literature about

how artifacts of data analysis are shared outside of the computing

environment [27]. The consumers of these results seldom ask for

the code that generated the results they are seeing. This is distinct

from traditional software engineering where the outcome is the

code. For data science, the outcome is the result of the analysis.

5 WHAT FUNCTIONALITY IS REUSED?

Informants mentioned a variety of tasks for which they share and

reuse code. In this section, we discuss these tasks in aggregate

across all reuse strategies, from most to least common task.

245

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Epperson et al.

Data preprocessing, transformation, cleaning.Themost com-

monly reused data science code is for data preprocessing. This

includes cleaning data, transforming data between formats, and

generally processing data into a usable state before analysis can

begin. Since data analysis pipelines often start with raw, uncleaned

sources, reusing code that cleans and formats data for analysis helps

speed up this process and ensures that the cleaning is done consis-

tently. Reusable cleaning code can also encapsulate idiosyncratic

details of how data is represented in different data sources.

Reading and writing data. The second most common reuse

task was reading and writing data from sources. Since many data

sets are too large to fit locally on an analyst’s machine, data scien-

tists frequently read and write data (samples) from the same data

stores or submit jobs to run on cloud servers. Working in the cloud

often involves configuration details like access keys and resource

IDs, which are hard to remember and therefore often copy-pasted

from previous work. Informants also reuse queries that are shared

within a team for commonly accessed data or to make sure different

analyses are looking at the same slice of the data. For example,

IP5 mentioned that engineering teams often share a query to pull

anomalous data that needs further analysis: “we interact with the

engineers on the team who can help us understand the telemetry

better and identify what is the right query to use for certain things.”

Modelling and evaluation. Code for creating and evaluating

models is also frequently reused. Data scientists are often creating

very similar models since their data is semantically similar over

time. For example, some teams only do time series forecasting and

thus use models appropriate for time series data. Other teams deal

with natural language text data and so use state of the art deep

neural nets for language processing tasks. This reusable modelling

code can be individual snippets or entire modelling pipelines.

Data visualization and reporting. Our informants often cre-

ate similar visualizations during the course of a project and reuse

these across projects. They reuse visualization code when the data

is similar across projects, when the task is similar (for example,

showing model performance), or to reuse the work of finding the

desired visualization parameters. Furthermore, several informants

mentioned that they like to maintain a similar style across their

charts so reuse common code to do this styling, depending on which

visualization library they are using. Informants also create dash-

board templates for tools like Power BI to save time and maintain

consistency.

Miscellaneous tasks. Various other tasks were mentioned with

less frequency, but still offer some breadth as to what data scien-

tists view as worth sharing and reusing. For instance, some teams

focusing on ML model development maintain library functions for

postprocessing, model selection, and model ensembling. Others

reuse code that runs pipelines for analysis, composing many of the

aforementioned steps together. These pipelines allow data scien-

tists to iterate faster on models by automating tedious steps such

as hyperparameter selection or data formatting.

6 APPROACHES TO REUSE AND SHARING

Since each informant works on a different team, each reported

a slightly different approach to sharing and reuse in their work,

shaped by the kinds of data they used and their team’s sharing struc-

ture. We thematically grouped their sharing and reuse strategies

into five distinct strategies. Some strategies are personal, namely

copying previous work (6.1) and keeping a personal utility library

(6.2). Other strategies are team-wide efforts: sharing notebooks

(6.3), creating template notebooks (6.4), and developing shared li-

braries (6.5). We describe these strategies in increasing order of

effort required to produce a shared artifact. These strategies are

not mutually exclusive. For instance, some participants used both a

personal utility library and template notebooks. The modal survey

respondent used three distinct strategies at least yearly, and two

different strategies at least monthly. Every survey respondent used

at least one of these strategies to share and reuse their code.

6.1 Personal analysis reuse

The most basic form of reuse is to look at one’s own past analyses

as a reference for current work. This code is only maintained by

a single individual and is not shared. Nearly every respondent

participated in this form of reuse at least sometimes (97%). Local

analysis code is reused for all of the tasks mentioned in Section 5,

from data processing to model evaluation. As one respondent (SP63)

described, “Anything I know I did before, I reuse it.”

6.1.1 Access and Search. Data scientists find prior work almost

exclusively by memory since they are the primary author of these

files. Furthermore, there is a range in which local analysis files are

tracked through version control. Some informants put all of their

analysis in a (personal) Git repository. Though, it is of note that

this is primarily so that the code files can be accessed on another

machine rather than to track versions of files. Others leave their

analyses on the local file system.

The majority of analysis code stored locally is reused via copy

and paste. A common case is cloning code from one computational

notebook to another, then adjusting the code to suit the current

context. When the reused code is a series of top-level statements

rather than class or function definitions, it cannot be imported and

called as an API. (Turning the reused code into a library is discussed

in the next section.) In our survey, the next most common way of

reusing this code was simply looking at it for reference and the

least common was importing the code.

6.1.2 Additions. As data scientists work on a variety of projects

over time, they store their analysis code. Often, this takes the form

of messy analysis notebooks or scratch files to produce a certain

result for an analysis. These notebooks and files are not cleaned

before storage by adding extra comments or documentation as

participants do not necessarily anticipate reusing them in the future.

In this sense, reusing local analysis code is opportunistic reuse –

when the code is initially written the data scientist is not sure if they

will use it again in the future and does so when the time arises. This

also means reusing in this way requires little effort since minimal

prior planning is required.

6.1.3 Benefits and Drawbacks. The benefit, and drawback, of this

strategy is its ease – all it takes is putting files in some form of

file structure and then finding relevant files later. Projects that

begin in local file storage might later make it into a different form

of reuse if they need to be shared with others. This low effort

246

Strategies for Reuse and Sharing among Data Scientists in Software Teams ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 1: We bin usage rate into three categories: daily or weekly usage as Frequent, monthly, seasonal, or yearly usage as

Sometimes, and Never for respondents who never use a strategy. Using personal past work is the most frequently used strategy,

and notebook templates the least frequent.

setup can lead to issues like multiple saved versions of the same

file or the same analysis with incremented suffixes (“analysis-v1”,

“analysis-v2”, “analysis-v3”, ...). However, since data scientists are

searching over code that they wrote they generally find it easy to

find past analysis stored in this form. Several interview informants

intentionally organized previous analyses by project or data store

to aid in future search.

6.2 Personal utility libraries

Similar to local analysis code, some participants have developed

a personal “utility library” of common functions or code snippets

they find themselves repeating. This utility library is only used and

maintained by a single individual. However, this strategy is distinct

from the local folders of analysis code in that code is intentionally

cleaned up before being stored in the library. The code stored in

personal utility libraries is often short (no more than a dozen lines),

restructured into a callable API (class and function definitions), and

parameterized so it can be used in new contexts. This code might

be used for all of the different tasks mentioned in Section 5 from

data cleaning to visualization.

6.2.1 Access and Search. Since this code has been restructured into

a callable API, the most common way respondents use this code is

by importing or calling it directly. However, copy and pasting from

the personal utility library is still very common. For such small

snippets of code, it can be just as easy to copy and paste into the

development environment such as the current analysis notebook.

In a similar fashion to personal analysis code, most functions in a

personal utility library are found by memory since the author has

an intimate knowledge of the code contained therein.

6.2.2 Additions. Data scientists add new things to their personal

utility library when they notice they repeat a task often enough

it is worth cleaning up into a reusable function. Over time, this

evolves into a utility library of assorted functions and templates

for various tasks:

These files are just calls which I have been using for three or

five years now. I just constantly go to them again and again

and again. So, I extracted these very, very generic common

things in single repo called utils that each file just does a

single thing. - IP12

6.2.3 Benefits and Drawbacks. Personal utility libraries benefit

data scientists by increasing productivity for common tasks. In

particular, the search cost for finding code is very low since data

scientists know what is in the library by memory. The only real

cost of maintaining a personal utility library is the time investment

to create reusable components for common tasks. However, since

these libraries are only made for personal use there is little risk that

this work will go to waste.

6.3 Team shared analysis code

The previous two strategies only involved reuse at the personal

level. However data scientists also share previous analyses among

their team to find how others have analyzed similar data or to get

help with tricky bits of code. This shared code often starts in a local

analysis folder and then particularly useful parts of an analysis

are extracted out and shared to the central, team-wide store. Team

sharing also encompasses more ad hoc sharing between teammates

over email or messages. Using and sharing code with teammates

is very common – over 90% of our survey respondents use this

strategy at least yearly and 63% at least monthly.

6.3.1 Access and Search. Team-wide sharing can take many forms,

however the most typical is a shared code repository on Github or a

similar version-control platform. Other storage strategies discussed

included copying code to a file share (without version control) or

attaching code to a team’s shared documentation, like a team wiki.

The code on shared Git repositories includes both computational

notebooks and source files in analysis languages like Python or R.

Our informants described using Git as a global file store rather than

using it for version control. To this end, different teams adopted dif-

ferent ways of organizing the shared files to make it more conducive

to reuse. One team had a separate folder for each person on their

shared repository where they pushed their past analyses. Another

organized the files by business area and data source so that future

data scientists looking at the same or similar data can find past

analyses. Sometimes this structure developed organically; other

teams were very intentional about how they stored this shared code

247

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Epperson et al.

to maximize the opportunities for reuse. For example, one team

hired a dedicated “information architect” to develop a structure for

them to organize and share their past analyses after the team size

grew and experienced some turnover and it became increasingly

difficult to find relevant analyses.

Ad-hoc sharing of analysis code between individual teammates

has less structure than when code is stored on a central team-wide

store. This type of sharing involves simply sending one of the files

stored locally for personal analysis reuse to a teammate. Whereas

code posted to git is a complete analysis, ad hoc sharing among

team mates might also be used for debugging purposes to get help

on a certain part of an analysis or query.

Themost commonlymentionedway that our survey respondents

reused this shared code was by looking at it as reference material.

However, they also copy and pasted the code and even imported

parts of these previous analyses to reuse. To find relevant past code,

data scientists most commonly ask their teammates if something

exists (70% of responses). They might post a question to a team

chat channel or message someone directly who they think has an

analysis they are searching for. Social searching in this manner is far

more frequent than the next ranked options of reading team-wide

documentation (13%) or searching over the shared code directly by

keyword (10%). Data scientists may not know if the code on the

shared repository is up to date or if teammates have other relevant

analyses that have not been uploaded to the shared repository.

6.3.2 Additions. Code shared to a central analysis store is almost

always cleaned before being shared. This includes adding more

comments and documentation, restructuring the code to make it

easier to understand, and generally making the code better styled.

These cleaning steps take a time investment, and thus data scientists

want to make sure this investment is worthwhile. If someone has

explicitly asked for a past analysis, they will put it on the shared

Git or share directly over email. Sometimes data scientists will

proactively post an analysis if they think someone might benefit

from it in the future. Some teams have a review process for code

shared to the central analysis repository. This is often to make sure

the code is clean and error free for others to use it in the future and

to make sure it is a sound analysis.

When code is only shared with a single individual in a more ad

hoc manner, our informants described less pressure to clean the

analysis code before sharing. This also allows sharing to happen

more quickly.

6.3.3 Benefits and Drawbacks. Although the shared analysis store

may not always be up to date, it offers a far better alternative than

no central place for storing analysis. Without a central, shared,

location work is very difficult to find and often ends up getting

repeated, leading to frustration. When describing a previous work

experience where there was no structured way of sharing analysis

code, IP16 commented:

Oh yes, tons of work was repeated in many places. Because

if you weren’t a part of the team that had access to some

shared drive somewhere, then you didn’t know that [work]

existed. If you didn’t have access to this one instance that

was still running on the desktop of some guy who left three

years ago, you didn’t know that [work] existed.

There exists a division in how often data scientists reuse previ-

ously shared code versus contribute their own shared code. The

most typical survey respondent reused shared team code weekly,

with some even doing so daily. However, the most typical rate at

which code was shared to the central analysis store was monthly.

This speaks to both the utility of referencing past work, as well as

the time investment required to clean and share one’s own code

that is unlikely to be done daily. Additionally, over time an existing

analysis might already exist and so data scientists feel the benefit

of sharing their new, slightly different, analysis is marginal. This

trend of reusing shared code more frequently than contributing

new shared code holds for all of the remaining strategies.

Sharing cleaned analysis code allows team members to benefit

from one another’s prior work. This shared knowledge extends

beyond code but can also include documentation shared about pre-

vious experiments and what did not work so that future analyses do

not make the same mistake. For this sharing to be effective however,

more effort is required prior to sharing. By nature of sharing work

with other people, it takes more effort and data scientists want to

share high quality code with their peers. Answering this question

of “when is my work good enough to share with other people?” as

IP17 called it, can be difficult to navigate.

6.4 Team shared template notebooks

Typically, computational notebooks have issues of non-reproducible

code that limit their ability to be shared and reused [24]. However,

as they have grown into the de facto tool for data science, users have

developed strategies for making notebooks more reusable, namely

through template notebooks. To a certain extent, template notebook

sharing is a subset of team-wide sharing mentioned in Section 6.3,

however the methods presented here are unique enough to merit

their own strategy.

Template notebooks are normal computational notebooks that

have been cleaned up and generalized for a certain task. This clean-

ing can take many forms. Some teams put parameters at the top of

the notebook and leave “TODOs” in the comments to fill in these

parameters before running the notebook like a function. Over time,

each of these task-specific notebooks come together as a sort of

“library” for common code on the team. These notebooks are inten-

tionally cleaned so that they will run top to bottomwithout issue. In

this way, template notebooks are run more like a traditional python

script rather than an interactive notebook. Several informants also

discussed using the %run command in Databricks, which allows one
notebook to invoke another like a function, including parameter

passing.

Alternatively, a single notebook may contain numerous common

functions in a notebook as a library (NAL). For example, IP6’s team

has a centrally shared Databricks notebook that has numerous com-

monly used functions. These functions are cleaned and abstracted

before addition to the NAL. Yet when these functions are reused,

they are copy and pasted out of the shared notebook rather than

imported. This notebook is essentially a traditional software en-

gineering library – similar functions grouped together under one

umbrella. However it lives in same place analysts do their work.

Some tools have extra functionality that supports the use of

template notebooks and NALs. For example, Databricks allows

248

Strategies for Reuse and Sharing among Data Scientists in Software Teams ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

notebooks to be parameterized so that they can be run as a function

(top to bottom) with new parameters or a default value (see [8]

for more details on this syntax). Some of our informants have

developed whole analysis pipelines using this functionality where

one notebook does data cleaning and then calls another notebook

to do modelling, and so on.

Template notebooks were used least frequently among the sur-

veyed responses. This can be attributed to two main factors. The

first is that not every notebook shared with teammates is a template

notebook. Past analyses that are tightly coupled with a particular

data source are shared on team-wide stores but unless they are

cleaned to the extent they can be run independently, they are not a

template. Secondly, there is limited tool support for template note-

books outside of the Databricks environment, which was used on

a limited number of teams. Adding TODO comments to Jupyter

notebooks was one alternative strategy, however executing Jupyter

notebooks as a function is uncommon.

6.4.1 Access and Search. Template notebooks are most commonly

accessed from Git repositories for Jupyter based templates or within

an analysis ecosystem such as Databricks, where tool features best

support reuse. Even for notebooks stored in a version-controlled

Git repository, participants seldom use common Git operations like

branching and merging. Rather, they use Git as a remote store for

their work that others have easy access to, more similar to any

cloud storage location. Several participants even mentioned they

are not very comfortable with Git workflows and it is something

they would like to work on.

Code is most commonly reused by copy and paste or (if the

tool supports it) by calling the code directly. As is the case with all

forms of shared code artifacts, the most commonway among survey

respondents to find relevant notebook templates is by communicat-

ing with teammates. However, the next most popular response was

based on memory indicating that most shared notebooks are for

small, modular tasks that data scientists easily remember.

6.4.2 Additions. Our interview informants mentioned that most

notebook template additions are done by a select few members of

their team. However, everyone has the ability to share new tem-

plates. The division between reuse versus sharing frequency also

holds for notebook templates: the modal response for adding new

template notebooks is seasonally, whereas they are most commonly

used weekly.

6.4.3 Benefits and Drawbacks. Why do data scientists use shared

template notebooks rather than a library? One reason is that tem-

plate notebooks are more compatible with where they do most of

their work. If a reused notebook contains lots of visualization or

table output, this most easily re-run as a notebook rather than a

separate library. Another reason for template notebooks is that they

support tweaking the code to the analysis at hand. As SP131 says,

they use template notebooks “when the code requires customiza-

tion when applied to different scenarios.” Another motivation, from

SP46, is that template notebooks are useful for “Just about any sit-

uation involving analytics. Sharing notebooks is far easier and

portable than making a code library. For Data Scientists at least.”

Creating template notebooks is often faster than creating a tra-

ditional library. For example, survey respondents mentioned they

chose to create template notebooks because of “Extreme time con-

straint which limits the time I can spend on doing things the right

way” (SP43) or “Most of the time because the flow is easier” (SP24).

6.5 Team shared libraries

The last strategy we observed data scientists using is the traditional

software library. These are no different than any other library:

similar code is grouped together into one place that can be imported

and run from another analysis context. For example, IP3’s team

does time series analysis and so has developed a library in R of the

common cleaning methods, models, and postprocessing methods

they use. In fact, their library is so robust, they claimed it might

even hinder them trying new models or other methods if they are

not in the library because the marginal benefit of writing a new

function does not out-weight the cost.

6.5.1 Access and Search. Although these shared libraries are more

stable than some of the other forms of reuse, the most common way

that data scientists find code in the library is still by talking with

team mates. Other common responses were finding code based on

memory or by reading team-wide documentation that references

library functions. Regardless of the level of structure in sharing,

data science workers default to finding reusable code through social

interactions rather than searching over the shared code themselves.

Unsurprisingly, the primaryway that libraries are used is through

importing. They are also stored on Git and typically go through a

code review process between the whole team or the library main-

tainers on the team when new functions are added in. Library

functionality once again spans the entire range of data science

activities. The most common functions were data processing and

cleaning, followed by data reading and writing.

Some of the teams maintained a library for certain functions that

do not change much or need to be customized, and then used one

of the other team-wide sharing strategies for analysis code that is

updated more often:

In terms of the library that we have, that’s actually more of a

how to interact with our catalogs and our file systems. This

[notebook] right here, this is mostly just time series analytics.

They could have probably been added to [the library], but

this is something that we add to it every day.Whereas the file

system interaction stuff only happens... We only change it

once amonth that we need to add a new dataset or something.

- IP6

6.5.2 Additions. When developing these shared libraries, typically

a few individuals lead the charge and others contribute to a lesser

degree. For example, IP3 described their release cycles in the fol-

lowing way:

I think right now it’s more stable, this library. And generally

we have a monthly sync up to let all the teammates know

what happens with the new library. And also others will let

me and the other data scientists know what new functions

they would like to add in.

Among our survey respondents that used libraries, the most com-

mon response for library usage rate was monthly followed by

weekly. However, the most common rate of library contribution

249

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Epperson et al.

was never then seasonal. This shows that data scientists are using

these shared libraries far more often than contributing new code.

This has several possible explanations. One is that the library code

becomes more stable over time and so less things need to be added,

as is the case for IP3 above. Furthermore, the type of code shared

to libraries is more stable and so needs less updating than analysis

code or templates that necessitate frequent tweaks.

6.5.3 Benefits and Drawbacks. The preference for a shared library

versus shared notebooks templates was largely influenced by the

tool data scientists typically work in. Some teams that used the R

ecosystem, like IP3, find that using libraries is very convenient in

that environment. Others who use Python and notebooks primarily

like IP9, prefer template notebooks:

Honestly, I think it was just the ease of being able to view it

[in a notebook], edit it and at the same time, run it, just using

the command...Because abstracting it as a Python [module]

would have worked too, but then it hides it a bit too much in

my opinion. In this way, people can at least, like if they need

to make a change somewhere let’s say tomorrow, some of

these client secrets are no longer valid. Then, it still provides

the ability to easily debug what’s going on by just coming

to the common notebooks and swapping some of these out.

It’s just easier.

7 DETERMINANTS OF REUSE

Throughout our interviews, we noticed common factors that en-

couraged or discouraged data scientists from sharing and reusing

past analysis code. We refer to these as the determinants of reuse

and split them up among qualities of shared code, and incentives

for sharing and reusing analysis code.

7.1 Qualities of shared code

When evaluating whether to reuse past analysis code or write it

from scratch, data scientists must evaluate a trade off: do they invest

the time to find and adapt past code for their current analysis, or

write the code from scratch?

The data scientists surveyed agreed on several factors that helped

them navigate this trade off and encouraged them to reuse past

code. First, they must be able to quickly understand what the code is

doing (85% agreement1). If code is messy, hard to read, or confusing

then it is not worth taking the time to parse the past analysis. Along

these same lines, data scientists agreed that well documented and

“clean” code encourages reuse (87% agreement). Furthermore, if

only a small number of edits are required to adapt the code to their

current context this also promotes reuse (83% agreement). Of course,

if this code is contained in a library then small tweaks are more

difficult than in analysis files or template notebooks. Additionally,

if data scientists perceive that the code is doing something complex,

they will be more likely to reuse it since it would take them a long

time to rewrite themselves (92% agreement).

Trust in the author of code also encourages reuse (82% agree-

ment). This manifests when asking a specific person for their pre-

vious analysis, but also if data scientists look at shared repositories

1We calculate agreement as the sum of positive Likert responses of Important, Some-
what Important, and Very Important. Similarly, disagreement is the sum of negative
Likert responses.

and can see who uploaded an analysis. If they know that someone

has a reputation for good work and they trust them, they will be

more likely to reuse this person’s code.

Two other aspects that encourage reuse were met with more

mixed responses. Survey respondentswere ambivalent if theywould

be more likely to reuse code that is a small number of lines (39%

thought this was important, 32% unimportant, and 29% were in

the middle). We attribute this to the fact that the aforementioned

factors are more important than the actual length of the code –

long, well documented, but complex code is more likely reused

than short, messy, and simple code that is more easily written from

scratch. Lastly, survey respondents also had mixed responses on

whether recently updated code encouraged them to reuse. Since

some shared libraries experience less updates over time this does

not mean they have diminished utility. However, some respondents

mentioned they would prefer more recently updated analysis code

since it is less likely to contain stale references to databases or API

keys.

7.2 Incentives & Culture

We also discovered some of the incentives that encourage or dis-

courage sharing and reusing on data science teams. Some of these

are also related to the quality of the shared code, but others speak

to team culture and how well tools support sharing. The full range

of questions and responses are presented in Figure 2.

Data science work takes place in a wide variety of tools. A single

data scientist might use several tools just to analyze their data and

someone else on their team might use a different set of tools for

analysis. This can lead to difficulties finding and reusing code, as

demonstrated by the high agreement among survey respondents

that analyses in different languages and locations can make reuse

difficult (74% agreement). Furthermore, errors in shared code make

it harder to reuse other’s analyses (43% agree they often experience

errors, 30% disagree).

During our interviews, data scientists repeatedly mentioned how

their team culture influences their sharing practice. Respondents

almost unanimously agree that sharing code takes a time invest-

ment (93% agreement). Code must be commented, cleaned, and

presented in a way conducive for others to reuse that would not

have to be done otherwise. In order for this time investment to

feel worthwhile, the team culture must reward sharing. This means

when things are shared, people will actually use them, and that data

scientists have (or are allotted) the time to invest in creating high

quality, shared code. Some participants felt their team supported

and encouraged them to invest this time into making analysis code

sharable. IP15 says:

Another benefit is that we have a really strong learning cul-

ture, a knowledge sharing culture which was really nurtured

by the management and saying “Hey you know, yes you own

your project, but we’re not going to be proprietary about

anything within our team”. So we want to make sure that

everybody has access to everything and that’s how we help

each other out.

However, other respondents mentioned their team is still working

to establish a culture where sharing is rewarded:

250

Strategies for Reuse and Sharing among Data Scientists in Software Teams ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 2: Likert scale responses to questions about the determinants of reuse.

Sharing code in data science is often not rewarded at the

level needed to offset the investment necessary to do it well.

- SP104

Many survey participants felt their team valued and rewarded them

for investing time to share code (54% agreement), however 18%

disagreed and felt their team did not recognize their efforts. Regard-

less of tool usage or coding style, a team culture that encourages

data scientists to invest the time to share their culture is critical for

reuse to succeed.

8 DISCUSSION

In preceding sections, we have presented interview and survey

results on how data scientists go about sharing and reusing past

analysis; here we delve into a discussion of why. We also distin-

guish how reuse in data science is distinct from reuse in traditional

software engineering and present opportunities for future tools to

improve the experience of sharing and reuse in data science.

8.1 Code Is Not a Deliverable

Throughout our interviews and survey, data scientists repeatedly

mentioned how the code that they write is separate from their

project deliverables. In data science, the outcome of an analysis

is not the analysis code itself, but whatever insights, models, or

datasets are produced from that analysis. These insights are deliv-

ered through slide decks, word documents, and interactive dash-

boards. However, the consumers of these artifacts rarely care about

the analysis code itself or might not have the technical skill set to

understand all the code that went into producing the analysis out-

put. Future tools might investigate how to tie presentation artifacts

such as charts or tables back to the code and data used to create

the artifact to help speed up this iteration cycle and support reuse

at the presentation level as well.

Furthermore, many analyses are one-off, unrelated requests. Non-

code deliverables and one-off analyses ostensibly combine to create

disincentives for sharing and reuse. Despite this, reuse and sharing

are still very common. Data scientists realize how much reusing

past analyses improves their productivity by avoiding re-work. This

different incentive structure leads data scientists to adapt common

software engineering reuse strategies to their needs. The reuse of

personal code and team wide libraries have strong parallels with

typical software reuse whereas personal utility libraries, shared

analysis stores, and notebook templates developed out of the unique

needs for code reuse in data science. Future work might attempt to

quantify the benefits of reusing past code, for instance in terms of

the time required to complete an analysis.

8.2 Modular Data Science

Given the need for customization, it is difficult to create modular

data science analysis components. As mentioned in Section 6.5,

libraries are typically used for components that change little over

time, like data access APIs. However full analyses need to be cus-

tomized almost every time and so are more likely to be shared using

a customizable interface like a computational notebook.

There are few tools that support this kind of interaction. The best

example in the tools surveyed was the %run syntax in Databricks
for running notebooks as functions discussed in Section 6.4. This

feature allows the parameterization of notebooks. However, if note-

books need to be customized beyond the available parameters, data

scientists will often just clone and edit the notebook.

Observable offers a notebook style interface for JavaScript pro-

gramming that lets users import cells from any other Observable

notebook [5]. Observable is most often used for visualization cre-

ation; future work might explore how cell-level imports can aide

sharing and reuse in other data science programming environments.

Additionally, future tools might investigate how to combine mod-

ularity at the functional level with modular analyses that can be

customized to the current data by allowing the addition or deletion

of entire analysis steps.

8.3 Tool Interoperability

A common pain point among data scientists is the fact that analyses

can exist in many different tools and languages. Many of these tools

are customized to a certain type of analysis or part of the analysis

pipeline or are driven by data privacy and regulatory concerns. As

SP68 describes, “We have to use different platforms for different

purposes, which makes code reuse difficult.” Even those who are

proficient in one or more languages can struggle to understand

code in unfamiliar languages [25].

Existing integrated development environments allow data sci-

entists to work in multiple languages in the same user interface.

251

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Epperson et al.

Ongoing efforts like Apache Arrow [3] allow in-memory data ex-

change between language runtimes, which might encourage code

reuse across languages. Another approach is to provide a domain-

specific language for data science that can be compiled to multiple

languages and runtimes. For example, OpenAI’s Codex project [6]

allows data science workflows to be expressed in natural language

that is compiled to Python. Writing workflows at this higher level

of abstraction might make them more reusable in other analysis

contexts and AI-assisted code authoring can help data scientists

search for past code to reuse.

8.4 Data Privacy

In data science, analysis code can be difficult to understand and

impossible to run without the data it analyzes. Due to customer pri-

vacy or regulatory restrictions, sharing the data that accompanies

an analysis may not be possible, even within the same company.

Notebooks help since analysis results can be shared without ex-

posing access to the underlying data. However, notebooks need

access to the original data to re-run. Future work might explore

how analysis code can be shared with anonymized, private data

so that the code can still execute and thus provide help for future

analyses without exposing private data.

9 LIMITATIONS

Our interviews and survey are subject to several limitations. We

only interviewed data scientists from a single company with a

relatively mature data science practice. However, even within one

company not every data science team had uniformly mature reuse

practices. We expect these results will generalize to other data

scientist populations; some of the issues described may even be

felt more acutely by smaller organizations with less organized

data science practices. However, future work might explore this

explicitly. For our survey, incorrect branching logic caused not all

participants to see the Likert rating questions at the end. We report

all survey results as percentages of those that responded; skipped

questions or no responses are excluded from reported counts.

10 CONCLUSION

In summary, we present the results of 17 interviews and a 132 person

survey with professional data scientists about how they share and

reuse work. Our investigation revealed data scientists reuse work

through five strategies: personal analysis reuse, personal utility

libraries, team shared analysis code, team shared template note-

books, and team shared libraries. We discuss factors that encourage

and discourage reuse, and how future tools might better support

this practice in data science.

ACKNOWLEDGMENTS

We would like to thank our interview and survey participants for

their help in this research, and the anonymous reviewers for their

valuable feedback.

REFERENCES
[1] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why do developers use trivial packages? an empirical case study
on npm. In Proceedings of the 2017 11th joint meeting on foundations of software
engineering. 385–395.

[2] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 291–300.

[3] Apache. 2021. Apache Arrow. Retrieved October 15, 2021 from https:https:
//arrow.apache.org/

[4] Andrew Begel and Thomas Zimmermann. 2014. Analyze this! 145 questions for
data scientists in software engineering. In Proceedings of the 36th International
Conference on Software Engineering. 12–23.

[5] Mike Bostock. 2018. Introduction to Imports. Retrieved August 25, 2021 from
https://observablehq.com/@observablehq/introduction-to-imports

[6] Mark Chen and et al. 2021. Evaluating Large Language Models Trained on Code.
CoRR abs/2107.03374 (2021). arXiv:2107.03374 https://arxiv.org/abs/2107.03374

[7] Databricks. 2021. Databricks. Retrieved August 25, 2021 from https://databricks.
com

[8] Databricks. 2021. Notebook workflows. Retrieved October 11, 2021 from https:
//docs.databricks.com/notebooks/notebook-workflows.html

[9] William B Frakes and Kyo Kang. 2005. Software reuse research: Status and future.
IEEE transactions on Software Engineering 31, 7 (2005), 529–536.

[10] Git. 2021. Git. Retrieved August 25, 2021 from https://git-scm.com/
[11] Martin L Griss. 1993. Software reuse: From library to factory. IBM systems journal

32, 4 (1993), 548–566.
[12] Lars Heinemann, Florian Deissenboeck, Mario Gleirscher, Benjamin Hummel,

and Maximilian Irlbeck. 2011. On the extent and nature of software reuse in
open source java projects. In International Conference on Software Reuse. Springer,
207–222.

[13] Mary Beth Kery and Brad A Myers. 2018. Interactions for untangling messy
history in a computational notebook. In 2018 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 147–155.

[14] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016.
The emerging role of data scientists on software development teams. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE). IEEE,
96–107.

[15] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2018.
Data Scientists in Software Teams: State of the Art and Challenges. IEEE Trans-
actions on Software Engineering 44, 11 (2018), 1024–1038. https://doi.org/10.1109/
TSE.2017.2754374

[16] Yongbeom Kim and Edward A Stohr. 1998. Software reuse: survey and research
directions. Journal of Management Information Systems 14, 4 (1998), 113–147.

[17] Charles W Krueger. 1992. Software reuse. ACM Computing Surveys (CSUR) 24, 2
(1992), 131–183.

[18] Tim Menzies. 2016. How Not to Do It: Anti-Patterns for Data Science in Software
Engineering. In Proceedings of the 38th International Conference on Software
Engineering Companion (Austin, Texas) (ICSE ’16). Association for Computing
Machinery, New York, NY, USA, 887. https://doi.org/10.1145/2889160.2891047

[19] Tim Menzies, Ekrem Kocaguneli, Fayola Peters, Burak Turhan, and Leandro L.
Minku. 2013. Data Science for Software Engineering. In Proceedings of the 2013
International Conference on Software Engineering (San Francisco, CA, USA) (ICSE
’13). IEEE Press, 1484–1486.

[20] Microsoft. 2021. Kusto query overview. Retrieved October 8, 2021 from https:
//docs.microsoft.com/en-us/azure/data-explorer/kusto/query/

[21] Parastoo Mohagheghi and Reidar Conradi. 2007. Quality, productivity and eco-
nomic benefits of software reuse: a review of industrial studies. Empirical Software
Engineering 12 (2007), 471–516.

[22] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A Large-Scale Study About Quality and Reproducibility of Jupyter Note-
books. In 2019 IEEE/ACM 16th International Conference on Mining Software Repos-
itories (MSR). 507–517. https://doi.org/10.1109/MSR.2019.00077

[23] Israel J Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E Hassan.
2012. Understanding reuse in the android market. In 2012 20th IEEE International
Conference on Program Comprehension (ICPC). IEEE, 113–122.

[24] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Expla-
nation in Computational Notebooks. Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173606

[25] Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. 2020. Here We
Go Again: Why Is It Difficult for Developers to Learn Another Programming
Language?. In 42nd International Conference on Software Engineering (ICSE).

[26] Bowen Xu, Le An, Ferdian Thung, Foutse Khomh, and David Lo. 2020. Why rein-
venting the wheels? An empirical study on library reuse and re-implementation.
Empirical Software Engineering 25, 1 (Jan. 2020), 755–789. https://doi.org/10.
1007/s10664-019-09771-0

[27] Amy X. Zhang, Michael J. Muller, and Dakuo Wang. 2020. How do Data Science
Workers Collaborate? Roles, Workflows, and Tools. Proceedings of the ACM on
Human-Computer Interaction 4 (2020), 1 – 23.

252

