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ABSTRACT
Data scientists face a steep learning curve in understanding a new
domain for which they want to build machine learning (ML) models.
While input from domain experts could offer valuable help, such
input is often limited, expensive, and generally not in a form readily
consumable by a model development pipeline. In this paper, we
propose Ziva, a framework to guide domain experts in sharing
essential domain knowledge to data scientists for building NLP
models. With Ziva, experts are able to distill and share their domain
knowledge using domain concept extractors and five types of label
justification over a representative data sample. The design of Ziva
is informed by preliminary interviews with data scientists, in order
to understand current practices of domain knowledge acquisition
process for ML development projects. To assess our design, we
run a mix-method case-study to evaluate how Ziva can facilitate
interaction between domain experts and data scientists. Our results
highlight that (1) domain experts are able to use Ziva to provide
rich domain knowledge, while maintaining low mental load and
stress levels; and (2) data scientists find Ziva’s output helpful for
learning essential information about the domain, offering scalability
of information, and lowering the burden on domain experts to share
knowledge. We conclude this work by experimenting with building
NLP models using the Ziva output for our case study.
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1 INTRODUCTION
In recent decades, machine learning (ML) technologies have been
sought out by an increasing number of professionals to automate
their work tasks or augment their decision-making [83]. Broad
areas of applications are benefiting from integration of ML, such
as healthcare [15, 17], finance [22], employment [49], and so on.
However, building an ML model in a specialized domain is still
expensive and time-consuming for at least two reasons. First, a
common bottleneck in developing modern ML technologies is the
requirement of a large quantity of labeled data. Second, many steps
in an ML development pipeline, from problem definition to fea-
ture engineering to model debugging, necessitate an understanding
of domain-specific knowledge and requirements. Data scientists
therefore often require input from domain experts to obtain labeled
data, to understand model requirements, to inspire feature engi-
neering, and to get feedback on model behavior. In practice, such
knowledge transfer between domain experts and data scientists is
very much ad-hoc, with few standardized practices or proven effec-
tive approaches, and requires significant direct interaction between
data scientists and domain experts. Building a high-quality legal,
medical, or financial model will inevitably require a data scientist
to consult with professionals in such domains. In practice, these
are often costly and frustrating iterative conversations and label-
ing exercises that can go on for weeks and months, which usually
still do not yield output in a form readily consumable by a model
development pipeline.

In this work, we set out to develop methods and interfaces that
facilitate knowledge sharing from domain experts to data scientists
for model development. We chose to focus on natural language
processing (NLP) modeling tasks, and we are especially motivated
by real-world cold-start scenarios where labeled data is small or
nonexistent. Informed by a formative interview with data scientists
regarding current practices and challenges of learning from domain
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experts, we developed a domain-knowledge acquisition interface
Ziva (With Zero knowledge, How do I deVelopAmachine learning
model?). Instead of a data-labeling tool, Ziva intends to provide a
diverse set of elicitation methods to gather knowledge from domain
experts, then present the results as a repository to data scientists
to serve their domain understanding needs and to build ML models
for specialized domains. Ziva scaffolds the knowledge sharing in
desired formats and allows asynchronous exchange between do-
main experts and data scientists. It also allows flexible re-use of the
knowledge repository for different modeling tasks in the domain.

Specifically, informed by findings from the formative interview
and requirements of NLP modeling tasks, Ziva focuses on eliciting
key concepts in the text data of a domain (concept creation),
and rationale justifying a label that a domain expert gives to a
representative data instance (justification elicitation). In the
current version of Ziva, we provide five different justification
elicitationmethods – bag of words, simplification, perturbation,
concept bag of words, and concept annotation.

To evaluate and inform future development of Ziva, we con-
ducted a case study in assessment of its coupled design goals: 1)
to provide an efficient and user-friendly experience for domain
experts to supply domain knowledge; 2) to support data scientists
building NLP models, especially in cold-start scenarios.

We performed a lab study (N=12) and a crowd-deployment study
(N=88) for participants to act as domain experts of a restaurant re-
viewing domain, and use Ziva to provide concepts and justification-
based knowledge. We found the completion time and subjective
workload using different elicitation methods varied. Interestingly,
the popular keywords based justification (bag of words) approach
led to higher self-reported task success but was considered more
stressful.

We conducted an interview study with 7 data scientists to inves-
tigate whether and how Ziva could help them build NLP models.
Through the study, we identified design requirements for domain
knowledge-sharing tools in ML development workflow – scalability
of information and lowering workload for domain experts. Partici-
pants also reflected on how the shared domain knowledge facilitated
by Ziva may be utilized, including bootstrapping labels, supporting
feature engineering, improving explainability, and training few-
shot learning models. Based on these suggestions, we experimented
with building a rule-based model using the data from our user study,
and report the outcomes using knowledge elicited with different
methods. In summary, the contributions of the paper are as follows:

• Through a formative interview with data scientists who
built models in a specialized domain, we identified their
under-supported needs to learn about a domain from domain
experts.

• We developed Ziva, a tool providing concept creation
and five kinds of justification elicitation to gather
domain knowledge from domain experts in formats that
could help data scientists build NLP models.

• We conducted a case study using Ziva to elicit domain knowl-
edge then presented the output to data scientists in an inter-
view study. Their feedback validated the utility of Ziva and
provided design insights for tools that support knowledge
sharing and collaboration between domain experts and data
scientists.

• We also investigated the experience of domain experts using
Ziva. We believe that our analysis could inform the design
of knowledge elicitation methods for domain experts.

2 RELATEDWORK
We are informed by recent studies of data science practices, as well
as ML and HCI work that leverages domain experts’ input to train
or improve models, and research to facilitate knowledge sharing in
teams and organizations.

2.1 Data Science practices and collaboration
Recently the data science domain has spurred great research interest
in the HCI community. Besides developing numerous tools to sup-
port specific data science tasks (e.g. [4, 34, 35, 86]), an emerging area
of research has focused on studying the practices of data scientists
in model development work. Many have recognized the collabora-
tive nature of data science projects, with both intra- (among data
scientists) [43] and multi-disciplinary (with domain experts) collab-
oration [59, 84]. In particular, data scientists rely heavily on domain
experts during core modeling building stages, such as data access
and feature extraction. Domain experts also feature prominently in
latter stages of data science projects such as model evaluation and
communication of results [59]. However, data scientists’ work faces
significant challenges as such collaborative activities are currently
not well supported [50, 57], and they are often left with no choice
but to rely on “an intuitive sense of their data and processes” [53].

Computational notebooks are positioned as a potential solution
to both support collaborative coding and communicating results
to stakeholders [78]. However, a recent study reported reluctance
for data scientists to directly communicate the in-progress model
work in notebooks [65]. While there are tools emerging to address
the technology gaps to support collaborative data science prac-
tices, to our knowledge they tend to focus on supporting teams of
data scientists and place domain experts with limited elicitation.
In this work, we explore the approach of providing interfaces in
which domain experts can create a knowledge repository for a
sophisticated domain, so that it could be consumed by data scien-
tists asynchronously and flexibly when the availability of domain
experts is limited.

2.2 ML with domain experts
There has been a long-standing desire to increase the involvement
of domain experts in model building in both the ML and HCI com-
munities. For example, tasks like text annotation, image annotation
involve massive input from domain experts to provide domain-
related feedback. Ziva interface is inspired by NLP text annotation
tools [54, 60]. We take this design further to acquire domain knowl-
edge for model development and data scientists. Recognizing the
challenge of having domain experts label a large quantity of data,
many ML works have explored more efficient learning algorithms
to reduce the workload [68, 73], or utilize domain experts input
as rules [45], constraints [19, 56], prior information [11, 70], or
feedback to re-weigh features [24, 61]. Given the prominence of
label-hungry ML algorithms, weak supervision has become a popu-
lar approach to bootstrap labels based on feedback from domain
experts [23, 63, 64].
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TheHCI community is further concernedwith the isolation of do-
main experts from the model development process, requiring thus
data scientists to go through lengthy and asynchronous iterations to
get their input [9, 58]. To tackle the problem, the sub-field of interac-
tive machine learning (iML) is motivated to enable domain experts
or end-users to directly drive model behaviors [9, 36, 80]. Since do-
main experts might not have training in ML or programming, iML
systems elicit their input through intuitive and interactive interfaces
(e.g., visualization [39], graphic user interfaces [9], conversational
interfaces [18]), and a tight feedback loop for them to adjust their
input. A variety of user input have been explored in prior work for
different tasks in model development, including unseen training
data to help correct the model’s mistakes [18, 25], provide new
feature-level input [44] or adjustment to feature weights [68], as-
sessment of model performance [10, 26], error preferences [41],
parameter choices [52], model ensemble [75], etc.

Research on iML has been especially fruitful for NLP modeling
tasks, partly because text data and features (e.g., bag of words) are
often comprehensible to people, increasing the likelihood of ob-
taining effective feedback from domain experts or end-users [46].
For example, the tools solicit feedback for learned features [69] or
support features ideation by the users [14]. Interactive topic model-
ing is another well-explored area to incorporate domain experts’
input [21, 37, 38, 71], for example, by moving documents around
or adding words, to refine clusters of topics.

Our work is informed by prior work on iML but takes a comple-
mentary approach by facilitating knowledge sharing from domain
experts to data scientists. iML is not a panacea to effectively lever-
age domain experts’ input. There are known issues with letting ML
novices directly adjust models [72], such as lacking generalization
or over-fitting [81]. In practice it is not always feasible to set up
an iML system for domain experts to work with. Currently most
ML projects still rely on data scientists to write code and set up
the pipelines [59]. Moreover, having data scientists mediate the
knowledge input offers the flexibility to apply it to different kinds
of ML algorithms, and allow domain experts to provide reusable
knowledge not constrained by a particular modeling task.

In general, it is possible to elicit diverse kinds of knowledge from
people, not all of which could be consumed directly by a given ML
model. For example, Stumpt et al. [74] and Ghai et al. [28] explored
what kind of feedback people naturally want to give seeing model
explanations. Only a small subset of the various forms of feedback
is readily consumable by existing ML algorithms. However, as the
ML field rapidly advances, many novel usages of domain knowl-
edge are being explored. For example, since ML models might use
low-level features that are not human understandable (e.g., pixels
of an image), interpretable ML works explored eliciting human-
interpretable concepts in the domain (e.g., an object in the image)
and use the concepts to explain the model decisions [29, 42]. Elicited
domain concepts have also been used to create sub-groups for la-
beled data to enable “structure labeling”, which could lower the
re-labeling burden when a target class changes [47]. We further
envision elicited domain concepts could help data scientists head
start their model building, as revealed in our preliminary interview.
By facilitating knowledge sharing from domain experts, we also
hope to inspire novel algorithmic work that could leverage such a
knowledge repository.

2.3 Technologies for knowledge sharing
Ziva is also motivated by prior work on technologies that facilitate
knowledge sharing in enterprise and organizations. Knowledge
sharing has been long studied in the Computer Supported Collab-
orative Work (CSCW) community focusing on building collective
knowledge repositories and locating related experts [5, 67]. Knowl-
edge repository tools elicit various formal and informal information
including manuals, best practices, common questions, and so on.
For example, Goldberg et al. studied collaborative tagging and filter-
ing mechanisms for workers to construct a knowledge repository
[30]; Answer Garden is a system to build a repository through peo-
ple asking and answering questions [4]; Terveen et al. designed
a memory framework for large-scale software engineering where
groups collectively build a shared memory [76]; Nam and Acker-
man studied methods for elicitation of informal information into
more organized forms [55].

Knowledge sharing in ML projects poses unique challenges [8,
16] to make the knowledge transferrable into ML specifications.
The challenges are amplified in sophisticated domains. For example,
for a medical ML model, a clinician may have to help data scientists
understand complex drug information. We inform the design of
Ziva both by prior work on involving domain experts in data sci-
ence projects and model development, and a preliminary interview
study to understand how data scientists learn from domain experts.
Meanwhile, studies have warned that knowledge sharing and repos-
itory tools often fail in practice [33, 82, 88], if the design fails to
take into account the social dynamics, including what benefits and
demands these technologies bring for both the knowledge providers
and the knowledge consumers [5, 31]. Thereby we evaluate Ziva
by involving both the knowledge consumers–data scientists, and
the knowledge providers–domain experts.

3 PRELIMINARY INTERVIEW
To understand how data scientists grasp a domain, we conducted
semi-structured interviews with four data scientists working on
NLP models (2 females, 2 males). Each interview was 45 minutes
long and guided by a script that asks participants about their re-
cent projects with domain experts and their typical interactions
with those domain experts. We recruited participants via posting
on slack channels of an international technology company. Each
interviewee was compensated $15 for their time. We summarized
our interviewees’ projects and challenges in Table 1. As a result,
we identified the current practices of learning from domain experts
and design requirements for our tool.

3.1 Limited time and limited best practices
All of our data scientist interviewees indicated they often need
domain experts’ help and feedback. However, domain experts are
busy and have little time to spare. One said: “The first issue is getting
hold of their time... I think hardly I was getting one day a week, you
can say one hour a week, not even an entire day.” So data scientists
try to extract as much knowledge as they can in the limited time
they have. They have to spend significant time preparing for these
discussions. For example, they often manually curated examples
such as mis-classified instances and instances that contain the unfa-
miliar keywords to ground the discussion during the meetings with
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Table 1: Interviewees information

Pn (domain) Model (reasons of choosing the model) Methods of knowledge exchange

P1 (Legal, law) Rule-based (transparency, few labels) Instance perturbation
P2
(Disaster recovery)

Supervised neural net (sufficient labelers) Education session of domain overview domain
experts labeling

P2 (") Rule-based (transparency, few labels) Domain experts think aloud labeling data
P3 (Customer cate-
gorization)

Random forest (transparency) Pair-authoring (Go over analysis together with
domain experts [78])

P4 (Sports) AutoML (time) Brute-force model building

domain experts. Even though there is no standard way to extract
domain knowledge across different domains, but through mutual
effort they find what works best for a project. We identified the
following approaches to learn domain knowledge from domain
experts:

Example-driven conversation: The first field of approaches is
domain knowledge sharing based on examples. By inquiring about
how and why domain experts would label or make decisions for
these examples, data scientists learn rationales of how the model
should behave for the instances. There are three tactics mentioned
by our interviewees. P2 observed domain experts during labeling
to learn the domain experts’ thought process: “They would go line
by line in front of me so that I can also see what their brain is looking
at classifying them.” P1 initially took P2’s approach, but due to
the complexity of the law domain, explaining rationale required
extensive background knowledge. Oftentimes, it is unclear to data
scientists how to connect the explanations provided by the domain
experts to model specifications. P1 used a strategy called instance
perturbation – for a given instance, the domain experts were asked
to minimally change the instance until the model changes the label
and discuss the reasons. With this, data scientists were able to
narrow in on the parts of the instance that should be the most
important to the model’s decision. Instead of aiming to build a
perfect model right off the bat, P4 deployed their model first and
incrementally improved the model upon domain experts’ request.
Whenever domain experts encountered mis-classified results, they
shared the instances with data scientists and discussed why they
were mis-classified.

General background knowledge acquisition: Concepts are
key units of information for a given domain, such as notions, en-
tities, components or properties. A set of domain concepts can be
seen as a taxonomy. Understanding them could help data scientists
make sense of the domain. Participants reported approaches to
learn concepts in an unfamiliar domain. P2 and P3 said domain
experts in one of their projects offered a lecture to explain key con-
cepts their domain. For P2, domain experts gave an overview and
touched on the basic concepts of each class. P3 pair-authored [78]
with domain experts to bridge concepts and a mathematical for-
mula that encapsulates the information. With this iterative learning
process, data scientists were able to kick start model building. P2
said “I think that was very helpful because after that, my dependency
reduced a bit. I could myself assess that what category they belong
to.”

Summary: From our interview, we derived several design re-
quirements to design Ziva. We found that the usage of domain
knowledge is not only limited to labeling but also other parts in
ML development, sometimes open-ended learning. Thus, interfaces
of Ziva ought to facilitate domain-knowledge learning of data sci-
entists in general throughout the development workflow. More
specifically, we found that the tool should scaffold domain experts
to efficiently elicit domain knowledge within short amount of time
(R1). Next, a tool should help data scientists to extract basic domain
concepts (R2). Lastly, data scientists indicated that they often learn
from domain experts’ rationale, especially how they justify a deci-
sion or label. Hence, the tool needs to facilitate label justification
sharing (R3).

4 ZIVA: INTERFACE FOR ELICITING
DOMAIN KNOWLEDGE

This section introduces the interface of Ziva. Ziva provides features
for domain experts to create domain concepts and elicit justification
from representative instances that are automatically curated by
Ziva. We discuss Ziva’s different components and how they meet
the design requirements in detail.

4.1 Representative sampling for instances
creation

As highlighted in the our formative interview, domain experts have
limited time for labeling or sharing domain knowledge (R1). Hence,
it is important to ask them to review only a few of instances and the
sample can cover most concepts in the domain. Ziva extracts such
a representative sample ofm instances from a large training set of
N text instances by the simple method of transforming the original
text into ’tf-idf’ space, clustering the result using an algorithm such
as k-means (setting k =m), and, for each cluster, returning the text
instance closest to the cluster center. This method is not determin-
istic, but provides a reasonable set of representative instances, for
cases wherem << N .

4.2 Concept creation
Creating a taxonomy is an effective way of organizing informa-
tion [20, 48]. Ziva provides an interface where SMEs can extract
domain concepts (R2). Users are asked to categorize each example
instance, presented as a card, via a card-sorting activity. Users first
group cards by topic (general concepts of the domain such as atmo-
sphere, food, service, price). Cards in each topic are then further
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Data scientists

raw input
The red velvet is rich and moist!
I think that the waiter was friendly.
The clam chowder was not tasty.
Took forever to get my drink
Yesterday I ate a terrible burger.

…

Upload a dataset

Ziva

raw input
The red velvet is rich and moist!
I think that the waiter was friendly.
Took forever to get my drink

Domain experts

Input curation: Ziva automatically selects representative 
inputs to domain experts

Knowledge extraction:  
A domain expert (1) extracts 
taxonomy from the inputs and (2) 
explains rationales of the labeling

Data scientists use domain 
experts’ review to understand the 
domain and build a model. 

“restaurant”: { 
  “Food”: [“tasty”, “lukewarm”, “unique”], 
  “Service time": [“immediate”, “forever”] 
 } 

The red velvet is rich and moist!  
Took forever to get my drink

df

The soup of the day was clam chowder and it was not incredible.

The red velvet cake is tasteless.

Figure 1: To facilitate domain knowledge sharing, Ziva presents representative instances and to interfaces to review the in-
stances to domain experts, then which will be used by data scientists.

divided cards into descriptions referencing specific attributes for
a topic (e.g., cool, tasty, kind, high). The interface (Figure 2) was
implemented as a drag-and-drop UI using LMDD [2].

4.3 Justification-elicitation interface
Once a domain expert finishes the concept extraction, they review
each instance using one of elicitation interfaces, which ask the
domain expert to justify an instance’s label (this information is
then intended for consumption by data scientists (R3)). We used
Materialize to implement the justification elicitation conditions.

The justification elicitation interfaces were designed
through an iterative process of paper prototyping, starting with
initial designs inspired by our preliminary interviews. As we con-
ducted paper prototyping, we examined if (1) the answers from
different participants were consistent and (2) the information from
participants’ answers were useful to data scientists. We now de-
scribe the five different justification elicitation methods
that we created and evaluated, and highlight the design rationale
where appropriate.

Bag of words. This base condition reflects the most common
current approach. Given an instance and a label (e.g., positive, neg-
ative), the domain experts are asked to highlight the text snippets
that justify the label assignment.

Instance perturbation. Inspired by one of our data scientists in
the formative study, this condition asks a domain expert to perturb
(edit) a part of the instance such that the assigned label is no longer
justifiable by the resulting text. For example, in the restaurant
domain, “our server was kind”, can be modified to no longer convey
a positive sentiment by either negating an aspect (e.g., “our server
was not kind” ) or altering it (e.g., “our server was rude” ).

This strategy is also inspired by the research area of generat-
ing natural language adversarial examples [7]. Such approaches
algorithmically alter training examples to create similar adversarial
examples that fool well-trained NLP models. In our scenario, the
domain expert is seeking to alter training examples in order to
point out the most salient characteristics to the data scientist; the
latter learns from this information, combining it with syntactic and
semantic analysis of the original and perturbed instances.

Instance simplification. This condition asks domain experts
to shorten an instance as much as possible, leaving only text that
justifies the assigned label of the original instance. For example,
“That’s right. The red velvet cake... ohhhh.. it was rich and moist”,
can be simplified to “The cake was rich and moist”, as the rest of

the content does not convey any sentiment, and can therefore be
judged irrelevant to the sentiment analysis task.

This condition is inspired by the plethora of methods for sen-
tence simplification used in extractive text summarization [77]. In
particular, the domain expert is performing sentence reduction as
in [40]. The output can be considered to be a concise summary of
the original instance, keeping only that content which is directly
relevant to the sentiment analysis task. The result for the data sci-
entist is clean, compact, and fully relevant high quality training
examples.

Concept bag ofwords. This condition incorporates the concept
extracted in the prior step. Similar to the Bag of words condition,
domain experts are asked to highlight relevant text within each
instance to justify the assigned label; however, each highlight must
be grouped into one of the concepts. If, during Concept creation,
the domain expert copied a card to assign multiple topics and de-
scriptions, then the interface prompts multiple times to highlight
relevant text for each one. For example, if they classified the in-
stance, “That’s right. The red velvet cake... ohhhh.. it was rich and
moist”, into the concept “food is tasty”, they can select rich, moist
and cake as being indicative words for that concept.

Concept annotation. This condition is similar to the above
Concept bag of words condition. However, when annotating the
instance text, domain experts are directed to distinguish between
words relevant to the topic and words relevant to the description.
Given the above sample instance, the domain expert would need
to indicate which part of the sentence applies to food (e.g., cake)
and which to tasty (e.g., rich and moist). Both this and the previous
concept condition are motivated by the well-established knowledge
that a variety of NLP tasks, such as relation extraction, question
answering, clustering and text generation can benefit from tapping
into the the conceptual relationship present in the hierarchies of
human knowledge [85]. Learning taxonomies from text corpora is
a significant NLP research direction, especially for long-tailed and
domain-specific knowledge acquisition [79].

In the rest of the paper, we present a case study to evaluate the
utility of the Ziva interface in two parts. In Section 5, we conduct
a lab experiment and a crowd experiment in which participants
acted as domain experts using Ziva. We choose the domain of
restaurant reviews (Yelp Open Dataset[3]) and the NLP task of
sentiment analysis, as being extremely familiar and easy enough
to understand for most people to qualify as domain experts. In
Section 6, we conduct an interview study with data scientists to

589



IUI ’21, April 14–17, 2021, College Station, TX, USA S. Park et al.

Unsorte

Atmosphere
Unsorted cards

Food

Topics

Descriptions

It features cool themed decor and 
offers the calm welcoming vibe!  
My lamb chops are cooked to 
perfection. 

If a card contains multiple topics, 
use Copy to indicate the topics   

Copy

Concept Creation Justification Elicitation

Bag of words

Simplification

Perturbation

Concept BoWs

Annotation

Choose all the words that 
are indicative of 
“positive” label

Choose all the words that 
are indicative of  
“Food is tasty”

Shorten the sentence. Keep the 
all the ideas in the sentence 
relevant to “positive” label

Make smallest changes that 
make this sentence no 
longer “positive” label 

Annotate “food” and  
“is tasty”

Figure 2: Ziva interface: domain experts first extract domainknowledgewith curated instances. Then they review each instance
one by one using one of justification-elicitation interfaces.
evaluate the utility of domain knowledge collected in the above
experiments. We instruct the data scientists to assume no previous
knowledge of the domain, so we could use the elicited knowledge
about restaurant reviewing as proxy to understand how Ziva could
help them build NLP models.

5 EVALUATION ON DOMAIN EXPERTS’
EXPERIENCE

We recruited participants to act as domain experts of restaurant re-
viewing to use Ziva. In a lab study (N=12), we compared participants’
task completion and experience with all concept and justification
elicitation methods, and gathered their qualitative feedback. To
allow quantitatively compare the results of different justification
elicitation methods, we conducted a follow-up crowd experiment
(N=88).

5.1 Lab study
Study protocol: To avoid noisiness in labeling, we pre-labeled the
set of yelp reviews instance so we could focus on comparing the
elicitation methods. We created binary labels based on ground-truth
ratings: if the number of stars is 1 or 2 for a review, we labeled it as
negative, 4 or 5 as positive [87]. We then took a random balanced
sample of 10,000 instances. 8,000 were used as a (balanced) ’training
set’, from which we extracted ten representative instances to use
in the study (see Section 4.1.) We set the other 2,000 (balanced)
instances to use as a test set for analyzing the performance of
models built from the study output (see Section 6).

We recruited participants (5 female, 7 male), who self-report
little or no knowledge in ML via posting on slack channels of an
international technology company. Participants are designers, grad-
uate students, researchers, trained professionals, skilled laborers,
software engineers and project managers. To compensate their time,
we ran a $30 raffle.

Participants were given introduction to the project and a tutorial
of the Ziva interface. They were also given a practice task in a
different domain, i.e., clothing. For the concept extraction task, all
participants used the same interface. For the justification interface,

we randomly assigned each participant one treatment from the
elicitation methods without concepts (bag of words, label perturba-
tion and simplification), and one from those with concepts (concept
bag of words and concept annotation). Thus, each participant ex-
perienced two elicitation interfaces and reviewed 5 instances each.
After each interface, participants were asked to fill out the NASA
TLX form [32] to evaluate their subjective workload and share their
feedback. The entire session lasted about for up to one hour.

Task Results: One participant could not complete the second
justification interface. We reported the summary of concepts
generated by participants, as well as quantitative and qualitative
experience using justification methods.

Concept creation. Participants took 879.7 seconds on average
(σ=385.4). They created 3.92 topics on average (σ=1.11). Everyone
included Food quality and Customer service in their topics. To assess
taxonomy from each domain expert, we examined the consistency
between domain experts and coverage of the restaurant domain.

• Consistency between domain experts: The union of all topics
across all participants includes following 10 topics: ambiance,
cuisine, food quality, customer service, additional service,
complaint, speciality, reservation, location, and price. For
each topic, we rated whether each taxonomy intersects with
the topic or not. Thus, the inter-rater reliability (IRR) across
all domain experts was 58% using Fleiss’ κ.

• Coverage of the domain: We selected 3 additional instances
which were not shown to the participants. We used our cura-
tion method to pick another set of representative instances.
We then inspected how many instances can be categorized
using each taxonomy resulting in a coverage of 69% (25 out
of 36 instances).

Justification elicitation. The average task completion time in
each condition is summarized in Table 2. Since each participant was
assigned two out of five justification elicitation, there were only a
few data points per elicitation technique (3 to 5 per technique). To
further investigate in a larger population, we deployed Ziva on a
crowd platform described in the following section.
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Table 2: Average task completion time (standard deviation) of lab study participants

Bag of words Simplification Perturbation Concept bag of words Concept annotation
39.2 s (20.7) 106.6 s (86.8) 107.2 s (48.0) 36.8 s (14.0) 81.9 s (40.5)

Most participants found the bag of words condition easy to com-
plete. One participant said: “This was easy because a lot of words
were clearly positive or negative, such as "terrible" or "delicious"”.
However, some considered it tricky to identify words that are in-
dicative of the overall sentiment. For example, one participant said,
“this can be just descriptive without any positive or negative feelings
without the context. So it’s difficult to isolate the context out of the
words.”

For the simplification task, participants indicated the task was
straightforward. Participants said “easy as it had eliminated redun-
dant and unnecessary words” and “quite easy and intuitive, para-
phrasing keeping the original intent is what I usually do as part of
minutes of meetings”. One participant said sometimes the task be-
came hard because some instances could not be obviously shortened
and instead need to be entirely rewritten.

Participants said perturbation is also straightforward but it re-
quired them to understand the entire instance thoroughly. One
participant commented, “It was kind of hard because I don’t know
some of the words”. Another participant suggested that if the inter-
face suggested antonyms, it would be easier to finish the task.

With concept bag of words, participants said it allowed subjective
and nuanced elicitation, as they could pick words associated with a
concept without judging their sentiment. However, it led to more
varied results among participants. For example, for the concept Food
is tasty, and the instance Ohhhh... The red velvet cake is rich and
moist, most participants selected rich and moist. One participant
said “Even red velvet cake could be the indicative words if you
personally like the cake”. Others said “maybe ohhhh part can be
included” and “moist doesn’t necessarily mean delicious”.

For the concept annotation task, participants said it is straight-
forward to choose words directly mapped to each token. On the
other hand, it complicated the articulation to have to label in such
fine granularity. One participant commented, “slightly tedious as
it required me to comprehend on how best to label the words accord-
ingly”.

5.2 Crowd Experiments
To assess different justification methods on larger population,
we deployed the Ziva interface on a crowd platform.

Study Protocol: Using our representative sampling method, we
extracted 10 reviews from the datasets used in the lab study. We
pre-populated a taxonomy. In order to provide a representative sam-
pled concept, we recruited 5 volunteers and asked them to extract
concepts of the restaurant domain using the concept extraction
interface and two of the authors aggregated the taxonomy.

We installed 5 test questions for each condition with ground-
truth created by the authors. If a crowd worker did not pass more
than half of test questions, they can not continue to the Human
Intelligence Task (HIT). Each worker was given one of the five
justification elicitation interfaces, and reviewed 10 instances.

We recruited our study participants from Appen [1]. We compen-
sated them with $0.5 per HIT, they are rewarded $2.5 in addition

for test questions. From the lab study, we observed each HIT took
less than 2 minutes on average, which makes hourly wage of $15.
After the tasks, we asked them to fill out the same NASA TLX form
to report on their subjective workload. Participants were rewarded
additional $3 for the survey. A total of 88 crowd workers completed
our study resulting in 857 instances with elicitated data.

Result: We analyzed participants’ survey responses using an
one-way Kruskal–Wallis ANOVA as summarized in Table 3. There
was marginal difference in self-reported success of task accomplish-
ment and significant difference in stress level across justification
elicitation methods.

As a post-hoc analysis, we ran a one-tailedMann-Whitney U Test.
The result revealed that participants completed the tasks using bag
of words perceived higher success in accomplishing the tasks than
participants with simplification (U=76.5, z=2.31; p=.01) and concept
annotation (U=97.5, z=2.02; p=.02). Concept bag of words users
also perceived higher success than simplification (U=75.5, z=2.34;
p=.009) and concept annotation users (U=103, z=1.85; p=.03).

As for the stress level, bag of words users reported significantly
higher stress than perturbation (U=55, z=2.90; p=.002), concept bag
of words (U=84.5, z=-2.24; p=.01), and concept annotation users
(U=81.5, z=-2.34; p=.01).

6 DATA SCIENTISTS INTERVIEW STUDY
To investigate what and how domain knowledge extracted from
Ziva helps data scientists, we conducted an interview study with
data scientists. We showed them concept and different justifi
cation results extracted by domain experts and asked them how
they could use them in their ML development workflow.

Study Protocol: Participants were given introduction to the
project, prompts shown to domain experts and corresponding out-
puts of each part of the interface. Each interview was 1 hour long
and driven by a questionnaire that posed questions related to com-
pare domain knowledge extracted by domain experts using Ziva to
their current practice. Finally, they were asked to rank usefulness
of justification interface to their workflow.

We recruited 7 data scientists who have between 4 and 20 years
of experience building models with domain experts in sophisticated
domains, using the slack channels of an international technology
company and word-of-mouth.

Results: We re-ranked the scores on a linear scale, with a data
scientist’s favorite at 5 points, the second-most favorite at 4 and
so on. If two techniques were tied for N-th rank, we averaged the
scores for the both of techniques (e.g., if two techniques are 4th,
they are given 1.5) As a result, the concept annotation technique
scored the most (30), then concept bag of words and perturbation
(22.5), simplification (17.5), and bag of words (12.5). Data scientists
had several reasons why they prefer one justification technique
to another and applications for different techniques. Through the
metrics, we were able to identify the design requirements and
important factors of domain-knowledge learning.
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Table 3: Crowd experiment Likert result. H statistics (p-value) in significance level 0.05

Mentally demanding Successfully accomplishing Hard to accomplish Insecure, Stressed
2.0825 (.72059) 8.7959 (.06641) 8.0609 (.08937) 9.9411 (.04143)
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Figure 3: Post-question responses in NASA TLX (1- Very low, 7- Very high) (Crowd experiment participants, n=88)
Standardized protocols. As revealed in our preliminary interview

and previous work [50], there is no set protocol of communica-
tions or common ground between two parties, and expressed a need
for a protocol of communication with domain experts. The steep
learning curve of a specialized domain and lack of guidance for
how to extract domain knowledge exacerbates the collaboration
with domain experts. Three of interviewees said that having such
a concept and examples upfront provided by domain experts has
helped them to build a model in prior projects. One said, “They
describe what are the component information and examples. It was
not very difficult to understand after reading the documents.” In light
of this, interviewees preferred justification techniques to in-
form them about the domain. For example, interviewees found
concept annotation helpful because it is tightly connected with
the concept, hence they can learn from examples how different
components of the domain is expressed in the instances. Simplifica-
tion is also helpful, as it is a simpler version of instances without
rhetoric.

One interviewee suggested to use justification techniques
to explain model decisions. They said, “I work on active learning ML
a lot. So I work with users. And so far all the interactions I expect for
the user, fairly simple, either binary feedback – correct or incorrect. I
have any incorporated explanation of when the user provide feedback.
What’s the explanation behind this feedback? I think that that would
be very useful to generate some explanation or learn how to generate
explanation.” While model explanation is not the intended usage of
the Ziva’s justification techniques, the data scientist found the
techniques helpful for debugging a model.

Scalability of domain knowledge. Interviewees were also inter-
ested in how they would scale the Ziva output. Since they only
received only 10 labeled instances and justification, it was too small
for data scientists to train a model.

One application of Ziva output mentioned by data scientists is to
label more instances by generalizing concept and justification,
so calledweak-supervised learning [62]. One interviewee said, “They
are trying to give me guidance on how to propagate the labels. So
one, the concept is going to be able to give me some notion on how to
bucket my data, right, like, just in an unsupervised fashion.”

Interviewees stressed the importance of domain knowledge in
feature engineering. During meetings with domain experts, they
focus on identifying features for their model: “I immediately start

looking at what are the different features or abstractions of features
that seem to be important to the domain expert.” However, data
scientists expressed the difficulty of feature ideation in building
models in a specialized domain. Repeat meetings were required to
go over many instances together in hope of covering the complete
set of features. 3 of interviewees said they would use Ziva output
to facilitate feature engineering by using the concepts created by
domain experts as features. A participant explained: “Vector that
we can convert each restaurant record into a some feature vector.”
When it comes to the best justification techniques for feature
engineering, one said “The one with the highest resolution would
be more beneficial for feature learning potentially because it allow
me to generalize better”. One data scientist suggested that they can
propagate the feature across different components (e.g., food/food
quality, service) of the domain expert’s concepts using distributional
signature [13]. For instance, in a restaurant domain, once they
identified positive-sentiment words related to food, they can find
similar sentiment of words related to service using the distribution
of words.

Reduced burden on domain experts. We also found data scientists
were being mindful of domain experts’ cognitive load when they
generated Ziva output, because domain experts were often busy.
Another reason is if the eliciting justification is difficult, data
scientists would not get a reliable result. One interviewee said: “I
would say there’s also the question of what I think would be more
easier for people, if it’s difficult, then they’re probably not going to
do it very well. I wouldn’t give it to them because I would think it’s
going to be more noisy.”

Elicitation and learning outcomes. To demonstrate the feasibility
of translating the Ziva output into useful features for model build-
ing, we constructed a real implementation. Inspired by a use case
suggested by a data scientist in our study, we built 5 models for
weak-supervised learning, mimicking a real-world cold start sce-
nario with extremely limited labeling resources and no pre-trained
model available. With such constraints, no one can expect state-
of-the-art performance after a few training examples. Instead, a
valuable characteristic at this early stage is intra-class consistency,
demonstrating parallel improvement in precision and recall perfor-
mance on various classes (here, positive and negative sentiment).
This would suggest that the model is indeed learning something
relevant to the entire task rather than guessing wildly, and hints at
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a good robustness that can be reliably improved upon with addi-
tional examples. We therefore worked with rule models, which are
both consistent and explainable, relatively simple for a human to
construct, and need very little labeled data to generate candidate
rules. However, the interviewed data scientists agreed that at scale,
the extracted elicitations could serve as features for a variety of
learning models.

Excepting the bag of words condition, the models primarily
focused on recognizing the semantic pattern of ‘Noun is [not]
Adjective’. Of course, this can take several forms (‘food is good’,
‘good food’, ‘food is not bad’, etc.) We built rule-based models that
extend a generic semantic role labeling model [6] which can easily
handle such variations. The generic model identifies all existing
semantic roles, and the ten instances, annotated in each condition,
are used to populate the dictionaries that those roles should match
on (e.g., ‘food’ and ‘good’). In general, we were careful during model
construction to not make any use of additional external knowledge
(e.g., we do not know that ‘hot wings’ and ‘burgers’ are both a type
of food, if this information was not in the output of Ziva.) Below
we describe the details of each elicitation method and discuss the
results, which are summarized in Table 4:

Bag of words. This was simple keyword matching on the terms
identified in this condition. The positive terms output from this con-
dition were mostly generic (‘amazing’, ‘delicious’) whereas many
negative terms were very specific (‘over-hyped’,‘small quantities’).
This is an artifact of both the domain (restaurant reviews) and the
labels. The performance on the two classes reflects this: the pos-
itive class has pretty bad precision but great recall, as it severely
over-generalizes, whereas the negative class has amazing precision
but barely finds any examples, because it is so specific.

Perturbation. The perturbed parts of the instances were treated
as local training instances. All possible ‘Noun is Adjective’ sig-
nals were extracted from those instances to populate the rele-
vant dictionaries. If a verb was negated, or an adjective trans-
formed into an antonym (e.g., changing ‘delicious’ to ‘disgusting’
in ‘There were delicious burgers’, assigned a positive label), this
meant that the topic (‘burgers’) is highly relevant, the original text
(‘delicious burgers’) was a training example for the given label, and
the perturbed result (‘disgusting burgers’) was for the opposite
label.

Simplification. The simplified instances were treated as high
quality training instances. All possible ’Noun is Adjective’ signals
were extracted from those instances to populate the relevant dictio-
naries. These signals did not overlap much in content, so the model
could do little generalizing. Much like the perturbation condition,
the recall for both classes is therefore extremely low, and the pre-
cision is respectable for only 10 training examples. Perturbation
recall results are slightly better because each perturbed instance
yields both a positive and a negative signal.

Concept bag of words and Concept annotation The concept
taxonomy described in Section 5.2 follows the ‘Noun is Adjective’
format by definition, so it was encoded accordingly for both of these
conditions. The outputs of each condition were then used to extend
the possible dictionaries. For concept bag of words, each annotation
was added to both the ‘Noun’ and ‘Adjective’ dictionaries (whenever
grammatically possible). For concept annotation, the ‘Noun’ and
‘Adjective’ elements were elicited separately, and thus were added

to their respective dictionaries. It is unclear that either of these
conditions is more successful than the other, at this stage. The
recall is markedly better than for simplification and perturbation
owing to the well-structured concept taxonomy, that lends itself
well to generalization. But this comes at a price, as the delta in
performance between the classes is similarly worse.

7 DISCUSSION
Capturing nuanced domain knowledge. While Ziva provides
some basic components in a domain, data scientists pointed out
there is information that the current design of Ziva does not reflect.
For instance, domain experts provide insight about data, such as
sparsity of a certain column. Data scientists find such information
helpful, but it can not be captured in the Ziva output. More inves-
tigation is required on how to extract such nuanced knowledge.
One possible direction is to leverage proposed documentation for
data [27] or for models [12, 51]. Another tactic is to take a set of
guided questions similar to the ones proposed in [66] in discussions
between domain experts and data scientists. Structure provided
by such artifacts can facilitate domain knowledge transfer and get
teams on the same page quickly.

Re-evaluating the old normal: Bag of words. Bag of words
is one of the dominant ways in the NLP domain to elicit signals.
It appears to be most simple and straightforward task for domain
experts. However, to our surprise, our work suggests otherwise.
Participants in our user study indicated that bag of words is in
fact more mentally demanding, harder to accomplish and more
stressful for them than other justification techniques. Further-
more, in our exercise of building a rule-based model with different
justificationmethods, the other methods outperformed the bag
of words. This suggests that both domain experts and data sci-
entists can benefit from our justification techniques during
collaboration. We believe our justification method could be
used throughout the ML development workflow and provide an
outlet for stakeholders to efficiently communicate during model
building.

Limitations. Various use cases of the Ziva output validated
the efficacy of our interfaces drawn from our preliminary study
and literature review, demonstrating that domain experts’ elicited
knowledge can facilitate model building. This paper only directly
considers the concrete setting of a sentiment classifier for Yelp
restaurant reviews. Nevertheless, the overall approach described
in this paper is domain-agnostic, and extremely relevant to real-
life scenarios with complex tasks, specialized domains, and sig-
nificant constraints on the resources to generate large amounts
of labeled data. Further, although only rule-based models were
built, the semantic role-based features constructed from the output
are quite appropriate as input to other learning approaches. Fu-
ture work should examine the generalizability of the approach for
other tasks (e.g., document classification, clustering, machine trans-
lation, and question answering), other domains (e.g., education,
health science), and other learning models. We therefore believe
we have identified a number of interesting design requirements of
domain-knowledge sharing in the ML development workflow that
are not currently addressed, and are applicable across tasks and
domains.
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Table 4: Performance of Rule-Based Models on 2,000 test instances, for different justification conditions on 10 training in-
stances. Because the test dataset is balanced, the Recall (R) value is equivalent to Accuracy. The last three columns are the
really meaningful ones, as they highlight the absolute differences in Precision/Recall/F1 between the two classes (lower is
better; values below 0.10 are highlighted). The Trivial model, which always assigns a positive label to each instance, is shown
for reference.

Positive Class Negative Class Delta Between Classes

P R F P R F P R F

Trivial (Always Pos) 0.5 1.0 0.667 0.0 0.0 0.0 0.5 1.0 0.667
Bag of Words 0.641 0.886 0.744 0.968 0.03 0.058 0.327 0.856 0.686
Perturbation 0.768 0.076 0.138 0.891 0.041 0.078 0.123 0.035 0.060
Simplification 0.775 0.069 0.127 0.857 0.030 0.058 0.082 0.039 0.069
Concept Bag of Words 0.735 0.219 0.337 0.836 0.102 0.182 0.101 0.117 0.155
Concept Annotation 0.723 0.245 0.366 0.806 0.112 0.197 0.083 0.133 0.169

8 CONCLUSION
In this paper, we presented a system and a case study on how data
scientists can get help from domain experts in the ML development
lifecycle. Along the way, we identified the current practice of how
data scientists acquire domain knowledge. Inspired by the existing
workarounds, we designed an interface that facilitates the sharing of
expert domain knowledge. We presented the interface output to ML
practitioners to reflect their experience building an ML model in a
specialized domain, fromwhichwe learned that scalability of a piece
of domain knowledge and low cognitive load of domain experts
are important factors for any domain knowledge-bootstrapping
tool. We continued the work by investigating the cognitive load of
different methods in our interface. We found that the traditional and
most-used elicitation method “bag of words” is actually the least
preferred by domain experts in terms of mental load and stress
level, and provides the least knowledge scalability compared to
other elicitation methods.

ACKNOWLEDGMENTS
We thank Dakuo Wang, David Karger and Ranit Aharonov for their
feedback.

REFERENCES
[1] 2021. Appen. https://appen.com.
[2] 2021. Lean-Mean-Drag-and-Drop. https://supraniti.github.io/Lean-Mean-Drag-

and-Drop/.
[3] 2021. Yelp Open Dataset. https://www.yelp.com/dataset.
[4] Mark S Ackerman. 1998. Augmenting organizational memory: a field study of

answer garden. ACM Transactions on Information Systems (TOIS) 16, 3 (1998),
203–224.

[5] Mark S Ackerman, Juri Dachtera, Volkmar Pipek, and Volker Wulf. 2013. Sharing
knowledge and expertise: The CSCW view of knowledge management. Computer
Supported Cooperative Work (CSCW) 22, 4-6 (2013), 531–573.

[6] A. Akbik and Yunyao Li. 2016. K-SRL: Instance-based Learning for Semantic Role
Labeling. In COLING.

[7] Moustafa Alzantot et al. 2018. Generating Natural Language Adversarial Ex-
amples. In Proceedings of the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational Linguistics, 2890–2896.
https://doi.org/10.18653/v1/D18-1316

[8] Saleema Amershi et al. 2019. Software engineering for machine learning: A case
study. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 291–300.

[9] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014.
Power to the people: The role of humans in interactive machine learning. Ai
Magazine 35, 4 (2014), 105–120.

[10] Saleema Amershi, Max Chickering, Steven M Drucker, Bongshin Lee, Patrice
Simard, and Jina Suh. 2015. Modeltracker: Redesigning performance analysis

tools for machine learning. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. 337–346.

[11] David Andrzejewski, Xiaojin Zhu, and Mark Craven. 2009. Incorporating domain
knowledge into topic modeling via Dirichlet forest priors. In Proceedings of the
26th annual international conference on machine learning. 25–32.

[12] Matthew Arnold, Rachel KE Bellamy, Michael Hind, Stephanie Houde, Sameep
Mehta, A Mojsilović, Ravi Nair, K Natesan Ramamurthy, Alexandra Olteanu,
David Piorkowski, et al. 2019. FactSheets: Increasing trust in AI services through
supplier’s declarations of conformity. IBM Journal of Research and Development
63, 4/5 (2019), 6–1.

[13] Yujia Bao, Menghua Wu, Shiyu Chang, and Regina Barzilay. 2019. Few-shot
text classification with distributional signatures. arXiv preprint arXiv:1908.06039
(2019).

[14] Michael Brooks, Saleema Amershi, Bongshin Lee, Steven M Drucker, Ashish
Kapoor, and Patrice Simard. 2015. FeatureInsight: Visual support for error-driven
feature ideation in text classification. In 2015 IEEE Conference on Visual Analytics
Science and Technology (VAST). IEEE, 105–112.

[15] Carrie Jun Cai et al. 2019. Human-Centered Tools for Coping with Imperfect
Algorithms during Medical Decision-Making. https://arxiv.org/abs/1902.02960

[16] Carrie J Cai and Philip J Guo. 2019. Software Developers Learning Machine
Learning: Motivations, Hurdles, and Desires. In 2019 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 25–34.

[17] Carrie Jun Cai, Samantha Winter, David Steiner, Lauren Wilcox, and Michael
Terry. 2019. "Hello AI": Uncovering the Onboarding Needs of Medical Practition-
ers for Human-AI Collaborative Decision-Making.

[18] Maya Cakmak and Andrea L Thomaz. 2012. Designing robot learners that ask
good questions. In 2012 7th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 17–24.

[19] Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2007. Guiding semi-supervision
with constraint-driven learning. In Proceedings of the 45th annual meeting of the
association of computational linguistics. 280–287.

[20] Lydia B Chilton, Greg Little, Darren Edge, Daniel S Weld, and James A Landay.
2013. Cascade: Crowdsourcing taxonomy creation. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 1999–2008.

[21] Jaegul Choo, Changhyun Lee, Chandan K Reddy, and Haesun Park. 2013. Utopian:
User-driven topic modeling based on interactive nonnegative matrix factorization.
IEEE transactions on visualization and computer graphics 19, 12 (2013), 1992–2001.

[22] Robert Culkin and Sanjiv R Das. 2017. Machine learning in finance: The case of
deep learning for option pricing. Journal of Investment Management 15, 4 (2017),
92–100.

[23] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W Bruce
Croft. 2017. Neural ranking models with weak supervision. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 65–74.

[24] Gregory Druck, Burr Settles, and Andrew McCallum. 2009. Active learning by
labeling features. In Proceedings of the 2009 conference on Empirical methods in
natural language processing. 81–90.

[25] Jerry Alan Fails and Dan R Olsen Jr. 2003. Interactive machine learning. In
Proceedings of the 8th international conference on Intelligent user interfaces. 39–45.

[26] James Fogarty, Desney Tan, Ashish Kapoor, and Simon Winder. 2008. CueFlik:
interactive concept learning in image search. In Proceedings of the sigchi conference
on human factors in computing systems. 29–38.

[27] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,
Hanna Wallach, Hal Daumé III, and Kate Crawford. 2018. Datasheets for datasets.
arXiv preprint arXiv:1803.09010 (2018).

594

https://appen.com
https://supraniti.github.io/Lean-Mean-Drag-and-Drop/
https://supraniti.github.io/Lean-Mean-Drag-and-Drop/
https://www.yelp.com/dataset
https://doi.org/10.18653/v1/D18-1316
https://arxiv.org/abs/1902.02960


Facilitating Knowledge Sharing from Domain Experts to Data Scientists for Building NLP Models IUI ’21, April 14–17, 2021, College Station, TX, USA

[28] Bhavya Ghai, Q Vera Liao, Yunfeng Zhang, Rachel Bellamy, and Klaus Mueller.
2020. Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience. arXiv preprint arXiv:2001.09219
(2020).

[29] Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. 2019. Towards au-
tomatic concept-based explanations. In Advances in Neural Information Processing
Systems. 9273–9282.

[30] Yaron Goldberg, Marilyn Safran, and Ehud Shapiro. 1992. Active mail—a frame-
work for implementing groupware. In Proceedings of the 1992 ACM conference on
Computer-supported cooperative work. 75–83.

[31] Jonathan Grudin. 1988. Why CSCW applications fail: problems in the design and
evaluationof organizational interfaces. In Proceedings of the 1988 ACM conference
on Computer-supported cooperative work. 85–93.

[32] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology. Vol. 52. Elsevier, 139–183.

[33] Sven Hoffmann et al. 2019. Cyber-Physical Systems for Knowledge and Expertise
Sharing inManufacturing Contexts: Towards a Model Enabling Design. Computer
Supported Cooperative Work (CSCW) 28, 3-4 (2019), 469–509.

[34] Fred Hohman, Andrew Head, Rich Caruana, Robert DeLine, and Steven M
Drucker. 2019. Gamut: A design probe to understand how data scientists un-
derstand machine learning models. In Proceedings of the 2019 CHI conference on
human factors in computing systems. 1–13.

[35] Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau. 2018. Visual
analytics in deep learning: An interrogative survey for the next frontiers. IEEE
transactions on visualization and computer graphics 25, 8 (2018), 2674–2693.

[36] Andreas Holzinger. 2016. Interactive machine learning for health informatics:
when do we need the human-in-the-loop? Brain Informatics 3, 2 (2016), 119–131.

[37] Enamul Hoque and Giuseppe Carenini. 2015. Convisit: Interactive topic modeling
for exploring asynchronous online conversations. In Proceedings of the 20th
International Conference on Intelligent User Interfaces. 169–180.

[38] Yuening Hu, Jordan Boyd-Graber, Brianna Satinoff, and Alison Smith. 2014.
Interactive topic modeling. Machine learning 95, 3 (2014), 423–469.

[39] Liu Jiang, Shixia Liu, and Changjian Chen. 2019. Recent research advances on
interactive machine learning. Journal of Visualization 22, 2 (2019), 401–417.

[40] Hongyan Jing. 2000. Sentence reduction for automatic text summarization. In
Proceedings of the sixth conference on Applied natural language processing (ANLC
’00). Association for Computational Linguistics, 310–315. https://doi.org/10.3115/
974147.974190

[41] Ashish Kapoor, Bongshin Lee, Desney Tan, and Eric Horvitz. 2010. Interactive
optimization for steering machine classification. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 1343–1352.

[42] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda
Viegas, et al. 2018. Interpretability beyond feature attribution: Quantitative
testing with concept activation vectors (tcav). In International conference on
machine learning. PMLR, 2668–2677.

[43] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016.
The emerging role of data scientists on software development teams. In Proceed-
ings of the 38th International Conference on Software Engineering. ACM, 96–107.

[44] Josua Krause, Adam Perer, and Enrico Bertini. 2014. INFUSE: interactive feature
selection for predictive modeling of high dimensional data. IEEE transactions on
visualization and computer graphics 20, 12 (2014), 1614–1623.

[45] Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick Reiss, Shivaku-
mar Vaithyanathan, and Huaiyu Zhu. 2009. SystemT: a system for declarative
information extraction. ACM SIGMOD Record 37, 4 (2009), 7–13.

[46] Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. 2015.
Principles of explanatory debugging to personalize interactive machine learning.
In Proceedings of the 20th international conference on intelligent user interfaces.
126–137.

[47] Todd Kulesza, Denis Charles, Rich Caruana, Saleema Amin Amershi, and
Danyel Aharon Fisher. 2019. Structured labeling to facilitate concept evolu-
tion in machine learning. US Patent 10,318,572.

[48] David Laniado, Davide Eynard, Marco Colombetti, et al. 2007. Using WordNet to
turn a folksonomy into a hierarchy of concepts. In Semantic Web Application and
Perspectives-Fourth Italian Semantic Web Workshop. 192–201.

[49] James Manyika, Michael Chui, Mehdi Miremadi, et al. 2017. A future that works:
AI, automation, employment, and productivity.McKinsey Global Institute Research,
Tech. Rep 60 (2017).

[50] Yaoli Mao et al. 2019. How Data Scientists Work Together With Domain Experts
in Scientific Collaborations: To Find The Right Answer Or To Ask The Right
Question? Proceedings of the ACM on Human-Computer Interaction 3, GROUP
(2019), 1–23.

[51] Margaret Mitchell, SimoneWu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman,
Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019.
Model cards for model reporting. In Proceedings of the conference on fairness,
accountability, and transparency. 220–229.

[52] Thomas Mühlbacher, Lorenz Linhardt, Torsten Möller, and Harald Piringer. 2017.
Treepod: Sensitivity-aware selection of pareto-optimal decision trees. IEEE

transactions on visualization and computer graphics 24, 1 (2017), 174–183.
[53] Michael Muller, Ingrid Lange, DakuoWang, David Piorkowski, Jason Tsay, Q. Vera

Liao, Casey Dugan, and Thomas Erickson. 2019. How Data Science Workers
Work with Data: Discovery, Capture, Curation, Design, Creation. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
UK) (CHI ’19). ACM, New York, NY, USA, Forthcoming.

[54] Hiroki Nakayama et al. 2018. doccano: Text Annotation Tool for Human. https:
//github.com/doccano/doccano

[55] Kevin K Nam and Mark S Ackerman. 2007. Arkose: reusing informal information
from online discussions. In Proceedings of the 2007 international ACM conference
on Supporting group work. 137–146.

[56] Radu Stefan Niculescu, Tom M Mitchell, and R Bharat Rao. 2006. Bayesian
network learningwith parameter constraints. Journal ofmachine learning research
7, Jul (2006), 1357–1383.

[57] Samir Passi and Steven J Jackson. 2018. Trust in data science: collaboration,
translation, and accountability in corporate data science projects. Proceedings of
the ACM on Human-Computer Interaction 2, CSCW (2018), 1–28.

[58] Claudio Pinhanez. 2019. Machine Teaching by Domain Experts: Towards More
Humane, Inclusive, and Intelligent Machine Learning Systems. arXiv preprint
arXiv:1908.08931 (2019).

[59] David Piorkowski, Soya Park, April Yi Wang, Dakuo Wang, Michael Muller, and
Felix Portnoy. 2021. How AI Developers Overcome Communication Challenges
in a Multidisciplinary Team: A Case Study. arXiv:2101.06098 [cs.CY]

[60] prodigy. 2018. prodigy. https://prodi.gy.
[61] Hema Raghavan, Omid Madani, and Rosie Jones. 2006. Active learning with

feedback on features and instances. Journal of Machine Learning Research 7, Aug
(2006), 1655–1686.

[62] Alex Ratner, Stephen Bach, Paroma Varma, and Chris Ré. 2019. Weak supervision:
the new programming paradigm for machine learning. Hazy Research. Available
via https://dawn. cs. stanford. edu//2017/07/16/weak-supervision/. Accessed (2019),
05–09.

[63] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. 2017. Snorkel: Rapid training data creationwithweak supervision.
In Proceedings of the VLDB Endowment. International Conference on Very Large
Data Bases, Vol. 11. NIH Public Access, 269.

[64] Alexander J Ratner, ChristopherMDe Sa, SenWu, Daniel Selsam, and Christopher
Ré. 2016. Data programming: Creating large training sets, quickly. In Advances
in neural information processing systems. 3567–3575.

[65] Adam Rule, Ian Drosos, Aurélien Tabard, and James D Hollan. 2018. Aiding
collaborative reuse of computational notebooks with annotated cell folding.
Proceedings of the ACM on Human-Computer Interaction 2, CSCW (2018), 1–12.

[66] Shems Saleh, William Boag, Lauren Erdman, and Tristan Naumann. 2020. Clinical
Collabsheets: 53 Questions to Guide a Clinical Collaboration. InMachine Learning
for Healthcare Conference. PMLR, 783–812.

[67] A Th Schreiber, Guus Schreiber, Hans Akkermans, Anjo Anjewierden, Nigel
Shadbolt, Robert de Hoog, Walter Van de Velde, Bob Wielinga, R Nigel, et al. 2000.
Knowledge engineering and management: the CommonKADS methodology. MIT
press.

[68] Burr Settles. 2009. Active learning literature survey. Technical Report. University
of Wisconsin-Madison Department of Computer Sciences.

[69] Burr Settles. 2011. Closing the loop: Fast, interactive semi-supervised annotation
with queries on features and instances. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing. 1467–1478.

[70] Patrice Y Simard, Saleema Amershi, David M Chickering, Alicia Edelman Pelton,
Soroush Ghorashi, Christopher Meek, Gonzalo Ramos, Jina Suh, Johan Verwey,
et al. 2017. Machine teaching: A new paradigm for building machine learning
systems. arXiv preprint arXiv:1707.06742 (2017).

[71] Alison Smith, Varun Kumar, Jordan Boyd-Graber, Kevin Seppi, and Leah Findlater.
2018. Closing the loop: User-centered design and evaluation of a human-in-the-
loop topic modeling system. In 23rd International Conference on Intelligent User
Interfaces. 293–304.

[72] Alison Smith-Renner, Varun Kumar, Jordan Boyd-Graber, Kevin Seppi, and Leah
Findlater. 2020. Digging into user control: perceptions of adherence and instability
in transparent models. In Proceedings of the 25th International Conference on
Intelligent User Interfaces. 519–530.

[73] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. In Advances in neural information processing systems. 4077–
4087.

[74] Simone Stumpf, Vidya Rajaram, Lida Li, Margaret Burnett, Thomas Dietterich,
Erin Sullivan, Russell Drummond, and Jonathan Herlocker. 2007. Toward harness-
ing user feedback for machine learning. In Proceedings of the 12th international
conference on Intelligent user interfaces. 82–91.

[75] Justin Talbot, Bongshin Lee, Ashish Kapoor, and Desney S Tan. 2009. Ensem-
bleMatrix: interactive visualization to support machine learning with multiple
classifiers. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. 1283–1292.

[76] Loren G Terveen, Peter G Selfridge, and M David Long. 1995. Living design mem-
ory: framework, implementation, lessons learned. Human-Computer Interaction

595

https://doi.org/10.3115/974147.974190
https://doi.org/10.3115/974147.974190
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://arxiv.org/abs/2101.06098
https://prodi.gy


IUI ’21, April 14–17, 2021, College Station, TX, USA S. Park et al.

10, 1 (1995), 1–37.
[77] Rafaella Vale et al. 2020. An Assessment of Sentence Simplification Methods

in Extractive Text Summarization. In Proceedings of the ACM Symposium on
Document Engineering 2020 (DocEng ’20). Association for Computing Machinery,
Article 9, 9 pages. https://doi.org/10.1145/3395027.3419588

[78] April Yi Wang, Anant Mittal, Christopher Brooks, and Steve Oney. 2019. How
Data Scientists Use Computational Notebooks for Real-Time Collaboration. Pro-
ceedings of the ACM on Human-Computer Interaction 3, CSCW (2019), 1–30.

[79] Chengyu Wang, Xiaofeng He, and Aoying Zhou. 2017. A Short Survey on
Taxonomy Learning from Text Corpora: Issues, Resources and Recent Advances.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 1190–1203. https://doi.
org/10.18653/v1/D17-1123

[80] Malcolm Ware, Eibe Frank, Geoffrey Holmes, Mark Hall, and Ian H Witten. 2001.
Interactive machine learning: letting users build classifiers. International Journal
of Human-Computer Studies 55, 3 (2001), 281–292.

[81] Tongshuang Wu, Daniel S Weld, and Jeffrey Heer. 2019. Local Decision Pitfalls
in Interactive Machine Learning: An Investigation into Feature Selection in
Sentiment Analysis. ACM Transactions on Computer-Human Interaction (TOCHI)
26, 4 (2019), 1–27.

[82] Chi-Lan Yang, Chien Wen Yuan, and Hao-Chuan Wang. 2019. When Knowledge
Network is Social Network: Understanding Collaborative Knowledge Transfer in
Workplace. Proceedings of the ACM on Human-Computer Interaction 3, CSCW

(2019), 1–23.
[83] Qian Yang, Aaron Steinfeld, and John Zimmerman. 2019. Unremarkable ai: Fitting

intelligent decision support into critical, clinical decision-making processes. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1–11.

[84] Amy X Zhang, Michael Muller, and Dakuo Wang. 2020. How do Data
Science Workers Collaborate? Roles, Workflows, and Tools. arXiv preprint
arXiv:2001.06684 (2020).

[85] Hao Zhang et al. 2016. Learning Concept Taxonomies from Multi-modal Data.
In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, 1791–1801. https://doi.
org/10.18653/v1/P16-1169

[86] Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and David S Ebert. 2018. Man-
ifold: A model-agnostic framework for interpretation and diagnosis of machine
learning models. IEEE transactions on visualization and computer graphics 25, 1
(2018), 364–373.

[87] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-Level Convo-
lutional Networks for Text Classification . arXiv:1509.01626 [cs] (Sept. 2015).
arXiv:1509.01626 [cs]

[88] Xiaomu Zhou, Mark Ackerman, and Kai Zheng. 2011. CPOE workarounds,
boundary objects, and assemblages. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 3353–3362.

596

https://doi.org/10.1145/3395027.3419588
https://doi.org/10.18653/v1/D17-1123
https://doi.org/10.18653/v1/D17-1123
https://doi.org/10.18653/v1/P16-1169
https://doi.org/10.18653/v1/P16-1169
https://arxiv.org/abs/1509.01626

	Abstract
	1 Introduction
	2 Related work
	2.1 Data Science practices and collaboration
	2.2 ML with domain experts
	2.3 Technologies for knowledge sharing

	3 Preliminary interview
	3.1 Limited time and limited best practices

	4 Ziva: Interface for Eliciting Domain Knowledge
	4.1 Representative sampling for instances creation
	4.2 Concept creation
	4.3 Justification-elicitation interface

	5 Evaluation on domain experts' experience
	5.1 Lab study
	5.2 Crowd Experiments

	6 Data scientists interview study
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

